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PREFACE

In his classic text: “Principles of Optics,” written with Nobel laureate Max Born,
Emil Wolf laid the foundations of contemporary physical optics. By frequency of
citation, that book is one of the three most popular physics books. In the first
edition, published in 1958, Emil Wolf described the almost unknown concept of
spatial coherence before lasers were introduced. He was also the first to document in
a book a new concept: Gabor’s /olography. The basic idea of publishing a modern
book on physical optics came from Max Born, but the fact that the closely related
concepts of spatial coherence and holography appeared so early in textbook form
had a formidable impact on science and physical optics engineering. At present
we can identify at least 250 companies and corporate divisions in the English-
language zone alone (U.S.A., Great Britain, Australia, and Canada), the origins
of which are easily traced to modern physical optics in general, and to the book
Principles of Optics in particular. Moreover, several multibillion dollar industries can
also be traced to this legacy, including liquid crystal and LLED displays and screens,
screens for direct-projection and rear-projection TV, and many other advanced
illumination systems, sensors, and nonimaging optical devices.

This SPIE Press book pays tribute to Emil Wolf (see Fig. 1) for his pio-
neering contributions to the science and engineering of physical optics. As his
close friend, collaborator, and well-known authority on diffractive optics, Professor
Brian Thompson, refers to Alexander Pope’s epitaph for Newton when character-
izing Emil Wolf’s contributions to physical optics through his books and numer-
ous scientific papers:

Nature and Nature’s laws lay hid in Night:
God said, Let NEWTON be! And all was Light.

Fven though his position that spatial coherence is critical to physical optics was
to some degree opposed by Max Born, it has, over the years, become a very pow-
erful concept in many areas of physical optics, some of which are presented herein.

Xvil



XV1il Preface

Figure 1 Emil Wolf and his wife Marlies at the SPTE Conference AM100, August
2003, San Diego, California.

These include diffraction optics, statistical optics, polarization of light, electromag-
netic theory of optical coherence, microscopic theory of spatial coherence, physical
radiometry (radiance), physical optics modeling of millimeter wave antennas, co-
herent optical microscopy, color vision, and Wolf’s wavelength shift. Professor Jan
Perina reviews optics in the Czech Republic (then Czechloslovakia, where Prof.
Wolf was born). Others address coherence-based light scattering, new aspects of
the Sommerfeld half-plane problem as well as Young’s experiment, comparison be-
tween Doppler and Wolf’s shifts, phase and information, wave-optical engineer-
ing, and holography and the inverse problems. Also discussed here are controver-
sial topics in contemporary optics, advanced liquid crystals, total-internal-reflection
tomography, coherence-mode analysis, nano-optics, and special problems in coher-
ence.

All the chapters of this book are presented by major experts in the field (see
Fig. 2), many of them closely connected to Exmil Wolf’s University of Rochester
School of Optics. The ideas they express are their own, subject only to peer re-
view. The papers are part science and part memoir, but all are suffused with love
and admiration of Emil Wolf, and for his contributions to science and engineer-

ng.



Preface XiX

Figure 2(a) Some attendees at SPIE AM 100 Conference, Tribute to Emil Wolf, En-
gineering Legacy of Physical Optics.

Figure 2(b) Silhouettes of attendees from Fig. 2(a): (1) Frank Wyrowski,
Friedrick-Schiller, Univ. of Jena, Germany; (2) Gajendra Savant, Physical Optics Corp.,
Torrance, CAj; (3) Sharon Peet, Physical Optics Corp.; (4) John Foley, Mississippi
State Univ.; (5) Ari Friberg, Royal Inst. of Technology, Sweden; (6) Aristide Doga-
riu, CREOL, Univ. of Florida; (7) Chrysostomos L. Nikias, Univ. of Southern Calif’;
(8) Nitin Savant, Physical Optics Corp.; (9) Tomasz Jannson, Physical Optics Corp.;
(10) Joseph Kunc, Univ. of Southern Calif.; (11) Kristina M. Johnson, Duke Univ;
(12) Kurt Oughstun, Univ. of Vermont; (13) Marlies Wolf, Emil’s wife; (14) James
Bilbro, SPIE 2004 President, and NASA Marshall Space Center; (15) David Fischer,
NASA Glenn Research Ctr.; (16) Emil Wolf; Univ. of Rochester; (17) Riccardo Borghi,
Univ. di Roma Tre, Italy; (18) Christian Brosseau, Univ. de Bretagne Occidentale,
France; (19) Taco Visser, Free Univ. Netherlands; (20) Petr Smid, Palacky Univ.,
The Czech Republic; (21) Anya van der Meulen-Visser, Taco’s wife; (22) Pavel Hor-
wath, Palacky Univ.,, The Czech Republic; (23) Mikael Ciftan, Army Res. Center;
(24) G.S. Agarwal, Physical Research Lab., India; (25) Mark Bennahmias, Physical Op-
tics Corp.; (26) Zu-Han Gu, Surface Optics, San Diego, CA.



Preface

This book is based on the authors’ presentations at SPIE Conference AM100:
Tribute to Emil Wolf: Engineering Legacy of Physical Optics, T.P. Jannson, Chair,
at the SPIE Annual Meeting in August 2003 in San Diego, California. Most

chapters in this book are extended versions of those conference presentations.

Tomasz P. Jannson
James C. Wyant
James W. Bilbro

September;, 2004



ACKNOWLEDGMENT

This book is mostly a product of the SPIE AM 100 Conference: Tribute to Emil
Wolf, August 2003, San Diego, California. The idea for this conference came from
James W. Bilbro, NASA Marshall Space Flight Center, and 2004 SPIE Pres-
ident; Dennis H. Goldstein, SPIE, Fellow, Air Force Research Lab.; James C.
Wyant, Director, Optical Science Center/University of Arizona; and H. John
Caulfield, SPIE Fellow, Fisk University, and the organizer of the two previous
SPIE Conferences—also tributes to pioneers in optics (Adolph W. Lohmann; Yuri
N. Denisyuk and Emmett N. Leith).

However, for whole logistics, as well as all organizational issues, we are all
in debt to the SPIE and AM100 Conference Organization Committee members
who provided, through their parent organizations, a significant financial contri-
bution to support both the conference and this book. The committee members
include: James W. Bilbro, NASA Marshall Space Center and 2004 SPIFE, Presi-
dent; H. John Caulfield, SPIE Fellow, Fisk Univ.; Mikael Ciftan, Army Research
Lab.; Dennis Goldstein, SPIE Fellow, Air Force Research Lab.; Kristina John-
son, Dean, Pratt School of Engineering, Duke Univ.; Joseph Kunc, Professor,
Univ. of Southern California; Joseph Mait, SPIE. Fellow, Army Research Lab.;
Chrysostomos L. Nikias, Dean, School of Engineering, Univ. of Southern Cali-
fornia; John M. Pellegrino, Director, Army Research Lab.; Lev Sadovnik, CEO,
WaveBand Corp.; Todd D. Steiner, Program Manager, Air Force Research Lab.;
and James C. Wyant, Director, Optical Science Ctr./Univ. of Arizona.

Tomasz Jannson
September, 2004






Buke Univergity

Cymund T. Pratt, Jr. School of Engineering
DURHAM, NORTH CAROLINA 27708-0271

OFFICE OF THE DEAN TELEPHONE (919) 660-5386
BOX 90271 FAX (919) 668-0656
August 2004

Dear Emil,

It was an honor and a pleasure to be part of the Society of Photo-Instrumentation
FEngineers Annual Meeting Tribute to Emil Wolf: Engineering Legacy of Physical
Optics, recognizing your seminal contributions to this field. Your energy, enthusi-
asm, and passion for optics and life have inspired generations of students, including
myself and fellow graduate students at Stanford, University of Colorado, and now
Duke University.

I recall the first time we met. It was in Cuernavaca, Mexico where many of the
luminaries in the field gathered in February of 1981 to enjoy lively discussions on
all aspects of physical optics, as well as the good weather. There were only a handful
of students at the meeting, and we were a bit intimidated by the stellar participants.
Always a teacher, coach and mentor, you and Marlies took us under your wings
and spent most of the week with us. That serendipitous meeting started a lifelong
friendship that means the world to me.

Our tradition of swimming at 7:00 a.m. before optics meetings started in the
freezing waters in Mexico. We continued to swim in Tucson at the 1982 OSA
meeting, where you and Marlies met my mother, establishing another friendship

Marlies Wolf, Kristina Johnson, and Emil Wolf at SPIE’s Annual Meeting 2003.
(Courtesy of Valerian Tatarskii, copyright 2003.)

xxiil



XXiv Duke University

Kristina Johnson and Emil Wolf, 2003.

that lasted until her death in 1999. We swam in New Orleans (1983), Rochester
(with Bailey’s Irish Cream, 1985), and in San Diego (2003).

You showed me how to build community within the academy. When I became
an assistant professor of electrical engineering at the University of Colorado, you
invited me to give a talk at Rochester on May 2, 1990. You and Marlies hosted
a dinner party for me and other participants of the Cuernavaca meeting, includ-
ing Profs. Nicholas George and Brian Thompson. We had a fabulous evening of
interesting conversation, good food, and great friends. And, of course, we swam.

Emil, you taught me about mutual coherence theory, the “Wolf Shift,” and how
to be a leader in the field. And, like my advisor, Joseph Goodman at Stanford, you
taught me that great men of optics are simply great men.

I look forward to your visit to Duke University this fall and to your lecture in
our Fitzpatrick Center distinguished speaker series. We will again enjoy eating and

ui*\m}zx

Kristina M. Johnson
Professor and Dean

thinking. Bring your swimsuit.

With my love, respect, and admiration,



Tribute to
Fomul Wolf

Science and I’ ngineering

Legacy of Physical Optics






~CHAPTER 1=

GUIDE, PHILOSOPHER, AND
FRIEND

Brian J. Thompson

Emil Wolf, “Thou wert [and art] my guide, philosopher, and friend.”"
1.1 Introduction

Having good mentors during the graduate student years and in the early-career
professional experience provides a major stimulus to a productive life as a scholar
and teacher. Our international university doctoral and postdoctoral programs are
at their best when they fully integrate research, educational, and teaching opportu-
nities so that intellectual development and scholarship go hand-in-hand with clear
insight, exposition, and formal teaching.

In my own case I was blessed with three major mentors. The first was Prof.
Henry Lipson, Chairman of the Physics Department in the Faculty of Technology
of the University of Manchester [UMIST—University of Manchester Institute
of Science and Technology, as it is now called]. I had been an undergraduate in
Lipson’s department, graduating in 1955. Before I entered this program I had
served for two years in the British Army in the Royal Electrical and Mechanical
Engineers, where I had the opportunity to learn as a technician about radar systems
and predictors (i.e., early single-function electronic computers).

Immediately upon graduation with my bachelor’s degree, I entered the doc-
toral program at UMIST and continued to have Henry Lipson as a mentor and
acquired my second mentor—Dr. Charles Taylor, who was my thesis advisor. My
third mentor was Dr. Emil Wolf, who came into my life in late 1955.

* Alexander Pope, “An Essay on Man,” Epistle iv 1.389
1
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1.2 Manchester 1955-1959

Both Lipson and Taylor were x-ray crystallographers with a deep interest in devel-
oping optical analog to x-ray diffraction and the analog computing opportunity that
this optical approach provided. This matched my own interest in optical science
and its applications. Thus, I had access to the optical diffractometer, the relatively
new device that had been developed starting in 1949 [5,6,17,19].

The optical system of the diffractometer is shown in Fig. 1. The source was
a high-pressure mercury arc operated with one of the hot-spots in the arc im-
aged onto a pinhole at S1. The light emitted by this effective secondary incoherent

L2

M

Figure 1 Schematic diagram of the optical diffractometer.
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source was collimated by lens 1.1, a 5-foot focal length telescope lens. The dif-
fracting object was placed between lens . and L., (a matching 5-foot focal length
telescope objective lens) and the diffraction pattern was formed in the focal plane
of L, where it was observed, recorded, and measured. Figure 2 shows an old
photograph of the lower half of the diffractometer that was mounted on a vertical
I-beam—1I-beams and H-beams became quite popular later on for long optical
benches.

My initial tasks were to fully characterize this instrument and its performance
and solve a number of specific problems of optical and mechanical alignment, fo-
cusing, resolution, and coherence control. Clearly it was very important to think
about this basically simple system in terms of its expected performance as a gen-
erator of diffraction patterns of planar two-dimensional binary objects (i.e., a dif-
fracting mask containing circular holes laid out in various specific geometries).
For example, Fig. 3 shows in (a) a representation of a projection of a molecule of
hexamethylbenzene in which each atom in the molecule is represented by a circu-
lar hole; (b) shows the diffraction pattern of (a). It is relatively easy to recognize
the symmetry relationships and see the reciprocal diffraction structure of the origi-
nal benzene ring. Quantitative positional information is readily available. Figure 4
shows a much more complicated arrangement of holes representing part of the
projected structure of deoxyribose nucleic acid and its corresponding diffraction
pattern.

Making a quantitative analysis of the performance of the optical diffractome-
ter and interpreting the relatively complicated and detailed diffraction patterns
required a significant knowledge of the coherence properties of the illumina-
tion of the diffracting mask. Thus, I studied the papers of Zernike, van Cittert,
H.H. Hopkins, and most particularly the writings of Emil Wolf, I also reread the
work of Michelson on the stellar interferometer. I could not believe my good for-
tune in finding that Dr. Wolf was a resident in Manchester as a Research Fellow
in the Theoretical Physics Department at Owens College of the University of
Manchester, having arrived there the previous year (1954). Thus, my third major
mentor, Emil Wolf, became a significant influence in my life and my work starting
in 1955. Our relationship and friendship have continued over the intervening years
and I am pleased to say exists today (I should also note that my professional and
social relationship with Henry Lipson and Charles Taylor continued throughout
their lives).

Emil Wolf was born in Prague, Czechoslovakia, almost exactly 10 years before
I was born in Glossop, England. I believe he came to England as a teenager and
then entered Bristol University in 1941, receiving his B.Sc. degree in 1945 and his
Ph.D. in 1948; these degrees were in mathematics and physics. He then went to
Cambridge University as a postdoctoral fellow (1948—1951), next moved to Ed-
inburgh University and spent a period of several years as a University lecturer and
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(a) (b)

Figure 3 (a) A representation of a projection of a molecule of hexamethylbenzene;
(b) the diffraction pattern of (a) (from [24]).
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Figure 4 (a) A representation of part of the projected structure of deoxyribose nucleic
acid; and (b) its corresponding diffraction pattern (from [24]).



6 Guide, Philosopher; and Friend

assistant to Prof. Max Born, and hence to Manchester as a Research Fellow from
1954 to 1958. I should also note that he received a D.Sc. degree from Edinburgh
in 1955. (Coincidentally, my wife began her undergraduate studies at St. Matthias
College of Bristol University the very year that Emil left Bristol.)

1.2.1 Two-beam interference

When I met Emil, he was already a very distinguished scholar with a portfolio
of some 25 major publications and he was working hard on the book Principles
of Optics. Our major collaboration was our work on two-beam interference with
partially coherent light. I still have in my own archives some of the original experi-
mental results. One of these sets of results obtained with the optical diffractometer

is shown in Fig. 5. In this particular set of results the diameter of the incoherent

|

Figure 5 Two-beam interference figures with partially coherent light. Parameters are
listed in the text (from [24]).
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source was 49 pm and the wavelength was 5941 A (mercury green). Two points
in the optical field were selected by two small circular apertures 0.14 c¢cm in di-
ameter, with varying separations from 1.0 ¢m to § cm covering two zeros of the
degree of spatial coherence. A related set of results were the ones published in our
joint paper entitled “Two-beam interference with partially coherent light” that was
submitted in December of 1956 and published in October of 1957 (see [29]). In
this paper we correlated the results with the theoretical predictions. Figure 6 shows
two of these historical results that were reproduced as part of six illustrations in
Principles of Optics published in 1959. We are pleased to note that they have been
used in many texts, review papers, and articles. These examples in Fig. 6 have the
important parameters listed; note the phase change in the spatial coherence in the
right-hand result, which provides a central minimum in the fringe field, as opposed
to a central maximum. In a follow-up study [23], I left the fringe spacing constant

Figure 5 (Continued).
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Figure 6 Two specific examples from the published set of six illustrations; example 2h is
the separation of the two pinholes, g5 is the modulus of the degree of spatial coherence,
and B is the phase of the degree of coherence [24,29].

and changed the spatial coherence by changing the size of the incoherent source,
thus producing a very nice quantitative illustration of the phase change (Fig. 7).

There is an interesting anecdote associated with our joint paper. It appeared
that there was a discrepancy between the theoretical results and the experimental
results. Of course, my assumption was that there was a mistake in the calculation,
but Emil’s take was that there was an error in the experiment! I went back and
checked all the parameters and indeed found a small error in the measurement
of the diameter of one of the pinholes (an important lesson to make sure of all
measurements at all times).

1.2.2 Coherence control

During this same time period a great deal of progress was made on dealing with
other issues associated with the diffractometer, including alignment, practical rules



Brian J. Thompson

‘[¥2¢7] 9ouaroyod reneds Jo 93135p oy ut a3ueyd sseyd oy} Jo uonENSN[T UY J SINSL]

(1)

+ € z [}

)

(e)




10 Guide, Philosopher; and Friend

for controlling the illumination and its spatial coherence tailored to the particular
problem being studied, and improvements in the recording techniques [20].

A significant number of other related techniques were developed using control
of the spatial coherence. One of these was to change the secondary source to be
spatially itself coherent by stopping down the aperture of the lens that imaged the
arc onto the pinhole so that the pinhole was smaller than the Airy disc produced
in that plane by the aperture of the imaging lens. The resultant illumination of
the diffraction plane was spatially coherent but with an amplitude taper. Another
control technique is illustrated in Fig. 8. We wished to achieve a bright display of
a diffraction pattern for live display (here we use the example of the projection of
the molecule of hexamethylbenzene). A mask was made of an array of these repre-
sentations, shown in (a). If the illumination is caused to be spatially coherent over
an individual molecule, but is effectively incoherent from molecule to molecule,
then no interference terms are produced and a bright diffraction pattern of the sin-
gle molecule (b) appears some 56 times brighter than that produced by a single
molecule alone, as illustrated in (c).

1.2.3 The Brussels Universal and International Exhibition, 1958

Prof. H. Lipson, Dr. C.A. Taylor, and I were invited by Sir W. Lawrence Bragg,
ER.S,, Director, Davy Faraday Research Laboratory, to contribute an explanatory
exhibit for the International Science Hall at the Brussels Exhibition. The overall
theme was the sequence: atom, crystal, molecule, and cell. Our component was
an Introduction to Diffraction [Catalogue and Handbook for International Science
Hall (1958), Section 0-15], the task was to devise and implement a display suit-
able for public viewing to illustrate diffraction of x rays by crystals. It was clear that
an optical analog display was the way to go. Figure 9 shows a mock-up of part of
our display consisting of two elements; first (on the right-hand side), large-scale
enlargements of optical diffraction patterns of various structures representing pro-
jections of real molecular crystal structures; and second (on the left-hand side),
a direct viewing of a quite bright aerial image of some of these patterns when look-
ing through a “window.” The “window” was in fact a large two-dimensional array
of the structure whose diffraction pattern was to be viewed. The basic scheme was
similar to the earlier discussion of Fig. 8, i.e., coherence control with the addition
of some irregularity of position of each “molecule.” We devised a step-and-repeat
camera to produce these windows on film with clear transparent circular “holes” on
a dark background. First a small irregular array of the molecule was produced with
each molecule in the same orientation; this unit was then repeated in a more-or-less
regular two-dimensional array over a sheet of film that became the window. Behind
the window a bright, but small source of light was reflected by a polished stainless
steel ball to produce a demagnified image of the original source. The observer
looked through the window, and in the plane of the source an image of a relatively



11

Brian J. Thompson

(b)

Figure 8 Control of the spatial coherence: (a) a diffracting mask with a two-dimensional
array of a representation of the projection of a molecule of hexamethylbenzene; (b) the

composite diffraction pattern of this array with the coherence controlled to be coherent

over each molecule but approximately incoherent between molecules; (c) for compari-
son, the pattern of a single molecule alone. Note: (b) would be visually 56 times brighter

than (c) [24].
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Figure 9 “Mock-up” of the display for the International Science Hall at the Brussels
Exhibition (see text for detail).

bright diffraction pattern was seen. The final product looked very professional, and
Charles Taylor and I delivered it to Sir Lawrence Bragg at The Royal Institution
in London for integration and shipment to Brussels. I next saw it on site in the
International Science Hall. Yes, that is a young Brian Thompson looking through
one of the “windows” at our collective handywork in Fig. 9!

At it turned out, Emil Wolf and his doctoral student George Parrent (of Beran
and Parrent fame, 1964) were going to Liege, Belgium, to the International Sym-
posium on Radio Wave Propagation and then on to Brussels. Emil’s paper was en-
titled “Some aspects of rigorous scalar treatment of electromagnetic waves” [31].
So we all went together. Figure 10 shows early morning photographs of the Wolfs
and the Parrents and the author on board the cross-channel ferry. Note Emil
Wolf’s ever constant pipe!

1.2.4 Books

Fourier Transforms and X-ray Diffraction, by [1. Lipson and C.A. Taylor.
During the same period of time, Lipson and Taylor published the small but ele-
gant book on Fourier transforms and x-ray diffraction. I was very pleased to con-
tribute an appendix showing the optical transforms of a hypothetical molecule, two
centrosymmetrically related units (equivalent to the real part of the transform of



Brian J. Thompson 13

(b)

Figure 10 “On the way to Brussels.” (a) Left to right: The Parrents and the Wolfs
on board the early morning cross-channel ferry; (b) Brian Thompson photographed by
George Parrent.
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the single molecule transform, two adjacent unit cells, four adjacent unit cells, and
finally the optical transform of many unit cells. Real and imaginary parts as well
as phase and modulus of the transforms were calculated by Keith A. Morley for
comparison with the optical transforms. I am pleased to have a dedicated copy of
this book in my library.

Principles of Optics, a.k.a. “Born and Wolf.” It is a great tribute to the au-
thors of this monumental book that it is usually referred to as “Born and Wolf”
rather than by its title! Over 40 years since its first publication in 1959, it is still go-
ing strong and in its seventh edition. I was very pleased to have an association with
this volume: the Thompson and Wolf results discussed above became a two-page
spread, and we also contributed a number of other illustrations on diffraction. In
addition, I had the opportunity to proofread a number of the chapters. Emil’s ded-
icated efforts and his scholarship are much to be admired—I believe he checked
every reference in the original. I am very pleased to have a dedicated copy of the
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Figure 11 (a) Dedication in the first edition of Principles of Optics, 1959, (b) Dedication
in the sixth edition, 1991, (¢) Dedication in Optical Coherence and Quantum Optics, 1995.
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first edition of this book along with subsequent editions, as well as other volumes

produced by Emil (see Fig. 11).

1.2.5 The three-dimensional structure of two-dimensional
diffraction

In my work I needed to find a technique for “focusing” the diffractometer, or what
some people call the diffraction-image. More precisely, we needed to be able to
locate the Fourier transform plane as accurately as possible. This plane is, of course,
the image plane of the illuminating source, but getting the best focus for that image
was not generally good enough because of the effective depth-of-focus. Wolf’s
work on “the light distribution near focus is an error-free diffraction image” [7,30]
gave me an idea since the minimums along the axis were more sharply defined
than the central maximum. Thus, if we locate the first minimum on either side of
the required focal plane, then the plane we need is then halfway between [20]. It
works!

I confess I could not resist engaging in a full experimental investigation of the
diffraction region for a variety of aperture functions, circular, annular, and rec-
tangular. Calculating the equivalent two-dimensional intensity distribution was a
real chore, involving me in many weeks of involvement with tables of L.ommel
functions; however, the results were very worthwhile [21]. It was Emil Wolf who
helped me get acquainted with LLommel functions. (For circular and annular aper-
tures see [22].)

Figure 12 shows one of these results for a square aperture; (a) shows the pho-
tographic record of the two-dimensional intensity distribution in the plane of the
second axial zero; (b) is an equal-intensity (isophote) plot for the same exam-
ple [24,25].

1.2.6 Fourier synthesis—spatial filtering

A final activity during this period was some very early work on optical Fourier syn-
thesis (or what was called spatial filtering and the more general optical image and/or
data processing). The optical diffractometer was modified by adding a second lens
system to form an image of the original mask by retransforming the diffraction
pattern, then limiting the contents of the diffraction pattern that contributed to the
image (i.e., spatial frequency filtering). One issue that was evaluated was the effects
of so-called series termination errors in x-ray diffraction, i.e., how is the final cal-
culated crystal structure affected by the limitation of the collection of the diffracted
x rays over a wide angle. Figure 13 shows an example of these results [9,24].

To conclude this section (and to jump forward in time for a moment rela-
tive to the optical analogs to x-ray diffraction), it is worth noting that Lipson and
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u=u"=239

Figure 12 Diffraction pattern near focus for a square aperture at the location of the
first axial minimum. (a) Photograph of the two-dimensional intensity distribution in a
plane perpendicular to the optical axis; (b) calculated isophote diagram corresponding
to (a) [24,25].
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Taylor contributed a long article entitled “X-ray cyrstal-structure determination as
a branch of physical optics” to Volume V of Progress in Optics, that excellent series
started by Emil Wolf in 1961 (and still going strong with Volume 46 appearing
this year and many to follow). In return I was asked to contribute two chapters to
a book entitled Optical Transforms, edited by H. Lipson in 1972. These chapters
were titled “Coherence requirements” and “Optical data processing” [27]. Finally,
all these reciprocal insights came together in a review article “Optical transforms

and coherent processing systems—with insights from crystallography” [28].
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Figure 13 An example of an early spatial filtering experiment to illustrate series termi-
nation errors in x-ray diffraction by an optical analogue.
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Sine S ouwe
Figure 13 (Continued).

1.3 1958-1968 Various Locations

Emil Wolf left Manchester after spending some time in New York City at the
Courant Institute. He arrived in Rochester, New York, in 1959 to join The Insti-
tute of Optics at the University of Rochester; and what a distinguished career he
has had in Rochester. My own travels took me to Leeds University as Lecturer
in Physics in 1959, where I was involved with soft x-ray spectroscopy of met-
als and alloys. One of my main colleagues was Dr. Colin Curry, who had written
some very fine texts including one that I admired on “Wave optics interference
and diffraction” [3]. Then in 1963 I moved from England to the U.S. and into
Emil Wolf’s sphere of influence. With a little persuasion from Emil and George
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Parrent, I joined Technical Operations, Inc. (Tech/Ops), in Burlington, Massa-
chusetts, where George Parrent had started a fine optics research and development
group. Physical optics was our main pursuit, and we had many years of exiting
and productive activity including: the development of far-field holography and its
application to dynamic particle size measurement (initially fog), coherent image
formation and its applications, multiple beam interference with partially coherent
light, storing color images in black and white film with Fourier readout (Peter
Mueller gets most of the credit for that development) and some detailed study of
diffraction with partially coherent light). The years 1963—1964 saw the start of a
series of articles that George and I prepared for the Journal of SPIE under the
general title Physical Optics Notebook. Then late in 1969 it became a hardbound
book with the 16 articles that had been published between 1963 and 1967. After
several reprintings, a new and very much expanded version was prepared and pub-
lished in 1989 [18]. We had great team at Tech/Ops that was certainly influenced
by the time Parrent and I spent with Wolf. Our contacts with Emil were frequent
and at various meeting locations around the world. In September 1964, both Emil
and I attended the International Commission for Optics meeting in Tokyo and Ky-

Figure 14 Emil Wolf in Sydney 1964.
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Figure 15 “At the Intensity Interferometer” in Australia, Hanbury-Brown in the center
with hands outstretched is seen talking with part of our group. Toraldo-de-Francia is on
the immediate right (photograph taken in 1964).

oto, Japan, after a satellite meeting in Sydney, Australia, in August. As part of the
Sydney meeting we went out to the site of the intensity interferometer. Figure 15
shows a group of people at that site, with Hanbury-Brown talking as we toured.

At the end of my “tour of duty” at Tech/Ops in Massachusetts, I spent a year at
Tech/Ops West and Beckman & Whitley in California worrying about ultra high-
speed photography, optical scanners, and electro-optic modulators. Then, at Emil’s
request, I prepared a review article for Progress in Optics on “Image formation with
partially coherent light” [26]. By the time the article was published I had accepted
the position as Professor of Optics and Director of the Institute of Optics and
assumed those duties in September of 1968. Thus, I was reunited with Emil Wolf
on the same campus—the University of Rochester.

1.4 The University of Rochester 1968 -

I fully intended to limit my remarks in this paper to the earlier years 1955-1968,
but I couldn’t resist a few comments about the 35 years in Rochester since 1968.
Others, of course, will talk more fully about Emil during that extended period of
productive scholarship on such topics as inverse scattering, evanescent waves, ra-
diometric models, focused fields, quantum optics, partial coherence in the space
frequency domain, red-shifts and blue shifts (Wolf shift), and many, many more
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too numerous to mention here. As for me, I was working on holography, optical
processing (including Knox-Thompson algorithm), apodisation of coherent imag-
ing and beam propagation systems, hybrid processing, two-step phase microscopy,
and the Lau effect, amongst several others.

1.4.1 Books and editing

For over the 35-year period Principles of Optics continued to be a major source book
and its seventh edition (much expanded) came out in 1999. In addition the vol-
ume entitled Oprical Coherence and Quantum Optics written by Mandel and Wolf
was published in 1995. Finally, a fine volume Selected Works of Emil Walf with Com-
mentary appeared in 2001. This book will make a great companion to the vol-
ume in which this current paper appears. For my own part, the much revised
version of the original Physical Optics Notebook re-titled The New Physical Optics
Notebook—Tutorial in Fourier Optics, with an expanded list of authors that includes
George Reynolds and John DeVelis was published by SPIE’s Optical Engineering
Press [18].

In the world of editing Emil’s founding of, and continued editing of, Progress
in Optics (46 volumes and counting) has been of immense value to our commu-
nity. Together with Len Mandel, Wolf had put together a volume entitled Seleczed
Papers on Coherence and Fluctuations of Light [12]. Late in 1984 SPIE founded the
Milestone Series of Selected Papers on topics in optical science and engineering [28].
As the series editor, I was pleased that we were able to reprint Mandel’s and Wolf’s
volume of selected papers listed above (see Milestone Volume 19).

Emil Wolf together with Robert Hopkins had started the “Rochester Confer-
ences on Coherence” later to be called the “Rochester Conferences on Coherence
and Quantum Optics.” Emil Wolf was to be coeditor of five of the Proceedings of
these conferences (3rd—7th, 1973—-1996). (See Mandel and Wolf 1973—-1984 [4].)

Attempting in vain to keep up with Emil’s productivity. I was cager to accept
the invitation to be the series editor of Marcel Dekker’s new book series on Optical
Engineering that recently produced its 85th volume. Additionally, The Interna-
tional Society for Optical Engineering’s main referenced journal is called Oprical
Engineering and has published many papers that are a part of Emil’s legacy in phys-
ical optics. My involvement in the early days of the journal, and then as its editor
from 1990-1997, was a very rewarding experience.

1.4.2 Miscellaneous highlights

Michelson Interferometry and Film, March 12, 1980

The above title was that of a symposium presented by The Institute of Optics to
commemorate the Fastman Kodak Centennial. The highlight of this program was
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the presentation by Dorothy M. Livingston, Albert Michelson’s youngest daugh-
ter, based on her book The Master of Light: A Biography of Albert A. Michelson [11].
Figure 16 shows three happy people together on this occasion.

Kingslake Seminar, March 1985

Figure 17 shows two images from this important event as we celebrated the con-
tributions of both Rudolph and Hilda Kingslake—both very good friends and
colleagues of the Wolfs and the Thompsons. The two images are of Emil and my-
self each with Lem Hyde, a former director of The Institute, whom I succeeded
in office.

Wolf-Mandel Day, October 24, 1987

We celebrated Wolf’s and Mandel’s separate and joint contributions at a day-long
event and Symposium on the Coherence, Propagation, and Fluctuations of Light.
Figure 18 shows these two worthy scholars on that occasion and I will let you write
the caption; it clearly needs a balloon to record Emil’s words!

Farewell Party Goer, March 28, 1995

Emil has always been fully engaged in the total life of the optics community. He is
seen here (Fig. 19) with Duncan Moore (also a former director of The Institute

Figure 16 Emil Wolf, Dorothy Livingston, and Brian Thompson on March 12, 1980,
at the Symposium “Michelson Interferometry and Film,” The Institute of Optics, Uni-

versity of Rochester.
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Figure 17 Emil Wolf and the author, each with LLem Hyde on the occasion of
the Kingslake Seminar, March 1988 (courtesy The Kingslake Archives, University of
Rochester).
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Figure 18 Emil Wolf and Len Mandel at the celebration of Wolf-Mandel Day, Octo-
ber 24, 1987 (courtesy The Kingslake Archives, University of Rochester).

Figure 19 Emil and Marlies Wolf with Duncan Moore at a reception at the University
of Rochester (courtesy The Kingslake Archives, University of Rochester).
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Figure 20 Emil Wolf chatting with Boris Stoicheff at a reception for Optical Society of
America directors and guests at the historic Patrick Barry House.

of Optics) and Mrs. Wolf; Marlies was his constant companion at all these events
and they are attending a farewell reception for Dean Bruce Arden on this occasion.

Optical Society of America Annual Meeting, Rochester, N.Y.,
October 20, 1996

We had a very pleasant reception at the Provost residence, the historic Patrick
Barry House for the OSA directors and other guests. Here (Fig. 20) is Emil (the
party goer) talking with old friend, Boris Stoicheff (University of Toronto). Emil
had spent a sabbatical at the University of Toronto in 1974—-1975.

1.5 Conclusion

I remember being asked many years ago by one of my Ph.D. students “who is
my grandfather?” I was puzzled at first by this question—if he didn’t know who
his grandfather was, how would I know! He explained that since I was his the-
sis advisor I was his “academic father,” and thus my thesis advisor would be his
“grandfather” [it crossed my mind at the time that maybe he thought that my aca-
demic ancestry had more value for him for name recognition than his current thesis
advisor’s name! But perish the thought!] I was, however, able to give him great sat-
isfaction: Professor Charles Taylor, ER.S.] was my advisor; in turn, Taylor’s advi-
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sor was Professor Henry Lipson, ER.S.; whose advisor was Sir Lawrence Bragg,
ER.S., and Nobel Laureate (this last honor shared with his father Sir William
Bragg, FR.S.—the father was the son’s academic advisor. The frosting on the cake
came when I informed the student that he could count Prof. Emil Wolf as his
academic great uncle.

There is one paper that sums up Emil’s approach to theoretical work and that
is really the title of his Nuovo Cimento paper “Optics in terms of observable quan-
tities” [33].

Emil, we celebrate your contributions to the scholarship and teaching that you
have provided for us all. Thank you.
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~CHAPTER 2-5

RECOLLECTIONS OF MAX BORN
Emil Wolf

At the request of the organizers of the SPIE International Symposium on Op-
tical Science and Technology, which was held in San Diego, CA on 3-8 August
2003, I gave an after-dinner speech at the Symposium Banquet. I spoke about my
collaboration with Max Born, a halfcentury earlier. The talk followed closely an ar-
ticle that was originally published in Op#ics News 9, 10—16 (1983) and is reprinted
below.

The editor of this volume, Dr. Tomasz Jannson, asked me to add some remarks
about the early days of holography and coherence that might be of special interest
to the reader. The brief remarks that follow were written in response to this request.

Max Born knew well the inventor of holography, Dennis Gabor, and because
of it, we learned about Gabor’s invention long before the great discovery became
generally known and appreciated. In fact, Principles of Optics was, 1 believe, the
first book in which the principles of holography were explained. Gabor was very
pleased that our book presented an account of his invention, as will become evident
on reading the article that follows.

The subject of coherence was, at the time of my collaboration with Max Born,
in its infancy. I became aware of it when I was working on the chapter concern-
ing interference for our book. The theory of interference, as described in optics
textbooks of that time, dealt mainly with monochromatic waves, not with wave-
fields that randomly fluctuate. These more complicated waves, which, in general,
are partially coherent, can be adequately described only in statistical terms. While
attempting to develop in our book a more satisfactory treatment of interference by
using elementary statistical concepts, I was able to introduce a more realistic treat-
ment of interference. It was a very fortunate coincidence that only a year after our
book was published, the first lasers were developed, which triggered great interest
in questions concerning coherence of light.

More about these two topics is briefly mentioned in the pages that follow.
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30 Recollections of Max Born
2.1 Introduction

The invitation to address this meeting has given me the rare opportunity to set
aside my customary activities and try to recall a period of my life several decades
ago when I had the great fortune of being able to collaborate with Max Born. As
the title of my talk suggests, this will be a rather personal account, but I will do
my best to present a true image of a scientist who has contributed in a decisive
way to modern physics in general and to optics in particular; it will also present
glimpses of a man who, under a somewhat brusque exterior, was a very humane
and kind person and who in the words of Bertrand Russell was brilliant, humble,
and completely without fear in public utterances.

The early part of my story is closely interwoven with another great scientist,
Dennis Gabor, through whose friendship I became acquainted with Born.

I completed my graduate studies in 1948 at Bristol University. My Ph.D. the-
sis supervisor was E. H. Linfoot, who at just about that time was appointed As-
sistant Director of the Cambridge University Observatory. He offered me, and 1
accepted, a position as his assistant in Cambridge. During the next two years while
I worked in Cambridge I frequently traveled to London to attend the meetings
of the Optical Group of the British Physical Society. They were usually held at
Imperial College and were often attended by Gabor, whose office was in the same
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Figure 1 Max Born at his desk, ca 1950. (Credit: AIP Niels Bohr Library.)
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complex of buildings. From time to time I presented short papers at these meet-
ings. At the end of some of the meetings Gabor would invite me to his office for
a chat. He would comment on the talks, make suggestions regarding my work,
and speak about his own researches. Gabor liked young people, and he always of-
fered encouragement to them. He knew Born from Germany, and he had great
admiration for him.

Through Gabor I learned in 1950 that Born was thinking of preparing a new
book on optics, somewhat along the lines of his earlier German book Optik, pub-
lished in 1933, but modernized to include accounts of the more important devel-
opments that had taken place in the nearly 20 years that had gone by since then.
At that time Born was the Tait Professor of Natural Philosophy at the University
of Edinburgh, a post he had held since 1936, and in 1950 he was 67 years old,
close to his retirement. He wanted to find some scientists who specialized in mod-
ern optics and who would be willing to collaborate with him in this project. Born
approached Gabor for advice, and at first it was planned that the book would be
written jointly by him, Gabor, and H. H. Hopkins. The book was to include a few
contributed sections on some specialized topics, and Gabor invited me to write a
section on diffraction theory of aberrations, a topic I was particularly interested in
at that time. Later it turned out that Hopkins felt he could not devote adequate
time to the project, and in October of 1950, Gabor, with Born’s agreement, wrote

Figure 2 Dennis Gabor.
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to Linfoot and me asking if either of us, or both, would be willing to take Hopkins’
place. After some lengthy negotiations it was agreed that Born, Gabor, and I would
co-author the book.

2.2 The Start of Collaboration

I was, of course, delighted with this opportunity, but there was the problem of
my finding the necessary time to work on this project while holding a full-time
appointment with Linfoot at Cambridge. I mentioned this to Gabor, and T told
him that if there were any possibility of obtaining an appointment with Born, which
would allow me to spend most of my time working on the book, I would gladly
leave Cambridge and go to Edinburgh.

Gabor took up the matter with Born, who was interested. Toward the end of
November 1950, Gabor wrote me that Born would be in London a few days later
and that he (Gabor) was arranging for the three of us to meet the following week-
end. It was agreed that I would come to Gabor’s office at Imperial College on the
following Saturday morning, December 2, 1950, and that we would then go to his
home in South Kensington, within walking distance of Imperial College. Born was
to come directly to Gabor’s home from his London hotel, and the three of us and
Mrs. Gabor would have lunch there.

I arrived at Gabor’s office just before lunch, and I have a vivid recollection of
that meeting. There was a long staircase leading to the entrance hall of the build-
ing. As we were walking down the staircase, Gabor suddenly became somewhat
apprehensive. He knew that our luncheon meeting might lead to an appointment
for me with Born, and he said to me, “Wolf; if you let me down, I will never forgive
you. Do you know who Born’s last assistant was? Heisenberg!” This statement was
not accurate. Born had other assistants after Heisenberg, but the remark shows
how nervous Gabor was on that particular occasion. Fortunately, all turned out
well, and Gabor certainly seemed in later years well satisfied with the consequences
of our luncheon with Born.

During that meeting Born asked me a few questions, mainly about my scientific
interests, and before the lunch was over he invited me to become his assistant in
Edinburgh, subject to the approval of Edinburgh University. It seemed to me
remarkable that Born should have made up his mind so quickly, without asking
for even a single letter of reference, especially since I had published only a few
papers by that time and was quite unknown to the scientific community.

Later, when I got to know Born better, I realized that his quick decision was
very much in line with one trait of his personality; he greatly trusted the judgment
of his friends. Since Gabor recommended me, Born considered further inquiries
about me to be superfluous. Unfortunately, as I also learned later, Born’s implicit
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trust in people whom he considered to be his friends was occasionally misplaced
and sometimes created problems for him.

A few days after our meeting I received a telegram from Born inviting me to
a formal interview at Edinburgh University. The interview took place about two
weeks later; and the next day Born wrote me saying that the committee which in-
terviewed me recommended my appointment as his private assistant, beginning
January 23, 1951. I resigned my post in Cambridge and took up the new appoint-
ment. Later I learned that committee approval was not really needed because my
salary was to be paid from an industrial grant that was entirely at Born’s disposal.
However, on this occasion Born was careful, because some time earlier he had had
on his staff Klaus Fuchs, who turned out to be a spy for the Prussians, and Born
got rather bad publicity from that.

Now, the name Fuchs means fox in German, and before inviting me to Ed-
inburgh, Born apparently wrote to Sir Edward Appleton, the Principal of Edin-
burgh University at that time, saying that he felt the decision about this particular
appointment should not be made by him alone; since he would like to appoint a
Wolf after a Fox!

2.3 Arrival at Edinburgh

I arrived in Edinburgh toward the end of January 1951, eager to start on our
project. Born’s Department of Applied Mathematics was located in the basement
of an old building on Drummond Street. I was surprised by the small size of the
department. Physically it consisted of Born’s office; an adjacent large room for

Figure 3 The building on Drummond Street in Edinburgh that housed Max Born’s
Department of Applied Mathematics.
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all of his scientific collaborators, about five at that time; a small office for Mrs.
Chester, his secretary; two rooms for the two permanent members of his academic
staff, Robert Schlapp, a senior lecturer; and Andrew Nisbet, a lecturer; and one
lecture room. The rest of the building was occupied by experimental physicists un-
der the direction of Professor Norman Feather. In earlier days the building housed
a hospital, in which Lord Lister, a famous surgeon known particularly for his work
on antiseptics, also worked.

In spite of his advanced age Born was very active and, as throughout all his
adult life, a prolific writer. He had a definite work routine. After coming to his
office he would dictate to his secretary answers to the letters that arrived in large
numbers almost daily. Afterward he would go to the adjacent room where all his
collaborators were seated around a large U-shaped table. He would start at one end
of it, stop opposite each person in turn, and ask the same question: “What have you
done since yesterday?” After listening to the answer he would discuss the particular
research activity and make suggestions. Not everyone, however, was happy with
this procedure. I remember a physicist in this group who became visibly nervous
each day as Born approached to ask his usual question, and one day he told me
that he found the strain too much and that he would leave as soon as he could find
another position. He indeed did so a few months later. At first I too was not entirely
comfortable with Born’s question, since obviously when one is doing research and
writing there are sometimes periods of low productivity. One day when Born stood
opposite me at the U-shaped table and asked, “Wolf, what have you done since
yesterday?” I said simply, “Nothing!” Born seemed a bit startled, but he did not
complain and just moved on to the next person, asking the same kind of question
again.

Born was always direct in expressing his views and feelings, but he did not
mind if others did the same, as this small incident indicates. There will be more
examples of this later.

2.4 Work at Edinburgh

We started working on the optics book as soon as I came to Edinburgh. It was
understood right from the beginning that Born’s main contribution would consist
of making material available from his German Opri#, but he was to take part in the
planning of the new book, make suggestions, and provide general advice. Most of
the actual writing was to be done by Gabor and me and a few contributors. How-
ever, like Hopkins earlier on, Gabor soon found it difficult to devote the necessary
time to the project, and it was mutually agreed that he would not be a co-author
after all, but would just contribute a section on electron optics. So in the end it be-
came my task to do most of the actual writing. Fortunately I was rather young then,
and so I had the energy needed for what turned out to be a very large project. I was
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Figure 4 Max Born as Privatdozent in Gottingen. (Reproduced from Hilbert by Con-
stance Reid, 1970.)

in fact 40 years younger than Born. This large age gap is undoubtedly responsible
for a question I am sometimes asked, whether I am a son of the Emil Wolf who
co-authored Principles of Optics with Max Born!

Although I did most of the writing, Born read the manuscript and made sug-
gestions for improvements. We signed a contract with the publishers about a year
after I came to Edinburgh, and we hoped to complete the manuscript by the time
Born was to retire, one-and-a-half years later. However, we were much too opti-
mistic. The writing of the book took about eight years altogether.

Throughout his life Born was a quick, prolific writer, publishing more than 300
scientific papers, about 31 books (not counting different editions and translations),
apart from numerous articles on nonscientific topics.” In spite of my relative youth
I could not compete with the speed with which Born wrote, even at his advanced
age, and it soon became clear to me that he was not too pleased with my slow
progress.

One day when I started writing an Appendix on Calculus of Variations, Born
said that the best treatment of that subject he knew of was in his notes of lectures
given by the great mathematician David Hilbert in Géttingen in the early years of

“ A bibliography of Born’s scientific publications is given in “Max Born,” by N. Kemmer and
R. Schlapp in Biographical Memoirs of the Royal Society, 17, Loondon: the Royal Society, 1971,
pp- 17-52. Born’s autobiography [2] was published posthumously, first in German in 1975 and
is, therefore, not included in that bibliography.
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Figure 5 Max Born in the 1920s.

this century. Born suggested that he dictate the Appendix to me, following in the
main Hilbert’s presentation, and that we acknowledge this in the preface to our
book. So we started in this way. After each dictating session I was to rewrite the
notes and give them to Born the next day for his comments. But we did not get
very far this way. After about two dictating sessions Born said he could prepare
the whole Appendix himself much faster without my help, which he then did. It
is essentially in this version, written by Born, that the Appendix on Calculus of
Variations appears in our book.

2.5 Born’s Revered Teacher

David Hilbert, whose presentation Born closely followed, was one of Born’s great
heroes. To physicists Hilbert is mainly known in connection with the concept of the
Hilbert space and as co-author of the classic text Methods of Mathematical Physics,
referred to generally as “Courant-Hilbert.” But Hilbert contributed in a funda-
mental way to many branches of mathematics and was generally considered to have
been the greatest mathematician of his time. Born became acquainted with Hilbert
soon after coming to Géttingen in 1905, later becoming Hilbert’s private assis-
tant. In one of his later writings Born refers to Hilbert as his “revered teacher and
friend,” and in a biography of Hilbert by Constance Reid [4], Born is quoted as
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Figure 6 David Hilbert, 1912.

saying that his job with Hilbert was to him “precious beyond description because
it enabled [him] to see and talk to him every day.”

Born had an encyclopedic knowledge of physics and whatever problem one
brought to him, he was able to offer a useful insight or suggest a pertinent refer-
ence. He also knew personally all the leading physicists of his time and would often
recall interesting stories about them.

Optics in those days—remember we are talking about optics in pre-laser
days—was not a subject that most physicists would consider exciting; in fact, rel-
atively little advanced optics was taught at universities in those days. The fash-
ion then was nuclear physics, particle physics, high energy physics, and solid state
physics. Born was quite different in this respect from most of his colleagues. To him
all physics was important, and rather than distinguish between “fashionable” and
“unfashionable” physics he would only distinguish between good and bad physics
research.

Born was equally broad-minded about the techniques used by physicists in
their research. For example, when we were writing a section on certain mathemati-
cal methods needed to evaluate the performance of optical systems, we found that
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although the results given in a basic paper on this subject were correct, the deriva-
tion contained serious flaws. I was rather indignant about this, but Born just said
something like, “In pioneering work everything is allowed, as long as one gets the
right answer. Real justification can come later.”

One of the earliest occasions when many physics students encounter Born’s
name comes when they start studying quantum theory of scattering. Here they
soon learn about the Born approximation. This term also occurs in many of the
papers on potential scattering that have been published in the more than half a
century that has gone by since Born wrote a basic paper on this subject. Yet Born
was rather irritated when the Born approximation was mentioned. He once said to
me, “I developed in that paper the whole perturbation expansion for the scattered
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field, valid to all orders, yet I am only given credit for the first term in that series

2.6 Resistance to New Discoveries

It was not always easy for Born’s collaborators to convince him quickly of new
discoveries. Let me illustrate this by an example from my own experience. In the
early 1950s I became very interested in problems of partial coherence. One day 1
found a result in this area of optics that seemed to me remarkable. I phoned Born
from my home one morning, told him I had an exciting new result, and asked him
for an appointment to discuss it. We arranged to have lunch together that day.
When I came to his office just before lunch, Born wanted to know straight away
what the excitement was all about. I told him I had found that not only an optical
field, but also its coherence properties, characterized by an appropriate correlation
function (now known as the mutual coherence function), are propagated in the
form of waves. Born looked at me rather skeptically, put his arm on my shoulder
and said, “Wolf, you have always been such a sensible fellow, but now you have
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become completely crazy!” Actually after a few days he accepted my result, and 1
suspect he then no longer doubted my sanity.

This incident illustrates a fact well known to Born’s collaborators—that Born
had a certain resistance to accept new results obtained by others. Nonetheless, he
continued thinking about them, and if they were correct he would eventually apol-
ogize for doubting them in the first place.

This trait of Born’s personality is very well described by the Polish physicist
Leopold Infeld, who collaborated with Born in Cambridge in the 1930s. I will
quote shortly some very perceptive observations Infeld made about Born in his
biography [3]; but before doing so I would like to mention a small incident relating
to this book.

One day I browsed through a bookstore in Edinburgh and found a used copy
of Infeld’s book. I was astonished to note that the book had Born’s signature on its
first page. I purchased it and asked Born the next day whether he knew the book.
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He said, “Yes, I had a copy of it and there is a funny description of me in it; but
I lent it to someone and it was never returned. I cannot remember whom I lent it
to.” The book I had purchased was obviously Born’s missing copy, so I gave it to
him, much to his delight.

In the book Infeld describes some of his experiences in Cambridge. He started
working with Dirac but found him rather uncommunicative. Later Infeld attended
some of Born’s lectures. During one of them Born gave an account of some results
that he had recently obtained. Infeld could not understand one of Born’s argu-
ments. He borrowed his notes so that he could study the argument more closely
later. Let me now quote from Infeld’s biography ([3], p. 208, et seq.):

On the evening of the day I received the paper the point suddenly became clear to me.
I knew that the mass of the electron was wrongly evaluated in Born’s paper and I knew how to
find the right value. My whole argument seemed simple and convincing to me. I could hardly
wait to tell it to Born, sure that he would see my point immediately. The next day I went to him
after his lecture and said: “I read your paper; the mass of the electron is wrong.” Born’s face
looked even more tense than usual. He said: “This is very interesting. Show me why.” Two of
his audience were still present in the lecture room. I took a piece of chalk and wrote a relativistic
formula for the mass density. Born interrupted me angrily: “This problem has nothing to do
with relativity theory. I don’t like such a formal approach. I find nothing wrong with the way
I introduced the mass.” Then he turned toward the two students who were listening to our
stormy discussion. “What do you think of my derivation?” They nodded their heads in full
approval. I put down the piece of chalk and did not even try to defend my point. Born felt a
little uneasy. Leaving the lecture room, he said, “I shall think it over.”

Infeld then goes on to say:

I'was annoyed at Born’s behavior as well as at my own and was, for one afternoon, disgusted
with Cambridge. I thought: “Here I met two great physicists. One of them does not talk.
I could as easily read his papers in Poland as here. The other talks, but he is rude.” The next
day I went again to Born’s lecture. He stood at the door before the lecture room. When I passed
him he said to me. “I am waiting for you. You were quite right. We will talk it over after the
lecture. You must not mind my being rude. Everyone who has worked with me knows it. I have
a resistance against accepting something from outside. I get angry and swear but always accept
it after a time if it is right.”

Our collaboration had begun with a quarrel, but a day later complete peace and under-
standing had been restored.

A little further on in his biography, Infeld speaks about Born again, and this is
what he says:

I marveled at the way in which he managed his heavy correspondence, answering letters
with incredible dispatch, at the same time looking through scientific papers. His tremendous
collection of reprints was well ordered; even the reprints from cranks and lunatics were kept,
under the heading “Idiots.” Born functioned like an entire institution, combining vivid imagi-
nation with splendid organization he worked quickly and in a restless mood. As in the case of
nearly all scientists, not only the result was important but the fact that he had achieved it.
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Infeld later continues:

There was something childish and attractive in Born’s eagerness to go ahead quickly, in his
restlessness and his moods, which changed suddenly from high enthusiasm to deep depression.
Sometimes when I would come with a new idea he would say rudely, “I think it is rubbish,” but
he never minded if I applied the same phrase to some of his ideas. But the great, the celebrated
Born was as happy and as pleased as a young student at words of praise and encouragement. In
his enthusiastic attitude, in the vividness of his mind, the impulsiveness with which he grasped
and rejected ideas, lay his great charm.

I regard these remarks of Infeld as a true and very perceptive description of Born’s
mode of work and of Born’s personality.

2.7 Kind and Compassionate

In spite of Born’s occasional irritation and impatience, he was a person who cared
deeply for the well-being of his fellow scientists and collaborators. His wife, Hed-
wig Born, was likewise a person with deep compassion for others. She too was a
remarkable and gifted person, Mrs. Born published a number of books, especially
poetry, and around 1938 became a Quaker, remaining active in the Quaker move-
ment for the rest of her life.

Figure 7 Mrs. Hedwig Born, 1961.
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I would like to give just one example from my own experience, which illustrates
Born’s concern for others. A few months after I began working with Born, I was
getting married. In those days it was difficult to rent an apartment in Edinburgh.
One day during the time when we were searching for a home I received a letter
from Mrs. Born, who was then with Professor Born on a visit to Germany. She said
that they had heard about our problem and were very concerned that we might have
to postpone getting married if we did not find somewhere to live. She then offered
to help us, suggesting that we share with them their small house in Edinburgh. In
the end we found an apartment elsewhere; but this small episode is an indication
of the warmth of their personalities and of their willingness to make a personal
sacrifice to help, when help was needed.

“In an Age of mediocrity and moral pygmies, the lives of Albert Einstein and Max Born
shine with an intense beauty. Something of this is reflected in their correspondence, and the
world is the richer for its publication.” T

Bertrand Russell

I mentioned earlier, that one of Born’s great heroes was the mathematician
David Hilbert. But there was another, even greater hero in Born’s life: Albert Ein-
stein, with whom he and also Mrs. Born maintained close personal friendships
for almost half a century. Unfortunately, after Einstein left Europe for America in

Figure 8 The house of Max and Hedwig Born in Edinburgh, at 84 Grange Loan.

T From Bertrand Russell’s Foreword to The Born-Einstein Letters, Ref. 4.



42 Recollections of Max Born

Figure 9 Albert Einstein in the 1920s. (Credit: AIP Niels Bohr Library.)

1932 they did not see each other again, but they carried on extensive correspon-
dence until Einstein’s death in 1955. The letters they exchanged were published in
1971, together with Born’s commentary, and the volume [1] is a precious contri-
bution to the history of physics and of the times in which they lived.

There is an episode I would like to relate briefly in connection with Born’s
friendship with Einstein. In the early 1950s, when Sir Edmund Whittaker was
preparing the second volume of his classic work A History of the Theories of Aether
and FElectricity, he sent Born the manuscript of a section dealing with the special
theory of relativity. Whittaker’s treatment placed a heavy emphasis on the work
of Poincaré and Lorentz and dismissed Finstein’s contribution as being of rather
minor significance. Born, who himself wrote a book on the theory of relativity,
was most unhappy with Whittaker’s manuscript and sent him a long report in
which he analyzed in detail the various contributions, indicating why he considered
FEinstein’s contribution to be much more fundamental.
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Figure 10 Sir Edmund Whittaker. (Reproduced by the courtesy of the University of
Edinburgh.)

However, Born did not succeed in changing Whittaker’s opinion.* In Sep-
tember of 1953, around the time Whittaker’s book was published, Born wrote to
Finstein about this. Let me quote from Born’s letter [1, p. 197]: “Many people
may now think (even if you do not) that I played a rather ugly role in this business.
After all it is common knowledge that you and I do not see eye to eye over the
question of determinism.”

Finstein was not concerned. This is what he said in his reply to Born
[1, p. 199]: “Dor’t lose any sleep over your friend’s book .... If he manages to
convince others, that is their own affair. I myself have certainly found satisfaction
in my efforts....” and then Finstein added, “After all, I do not need to read the
thing.”

Born retired that year, in 1953. The accompanying photograph shows Born
with the members of his department at the time of his retirement.

# Born’s opinion on this question rather than Whittaker’s is generally accepted. See, for exam-
ple, D. Martin’s biographical note about E. T. Whittaker in Dictionary of Scientific Biography,
C. C. Gillespie, editor-in-chief (Charles Scribner’s Sons, New York, 1976), Vol. X1V, p. 317; or
A. Pais: Subtle Is the Lord, The Science and the Life of Albert Einstein (Clarendon Press, Oxford,
and Oxford University Press, New York, 1982), p. 168.
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Figure 11 Members of Max Born’s department at the time of his retirement (1953)
from the Tait Chair of Natural Philosophy at the University of Edinburgh. Standing (from
left to right) E. Wolf; D. J. Hooton, A. Nisbet. Sitting: Mrs Chester (secretary), M. Born,
R. Schlapp.

“Everybody who had contact with him remembers him not only as a brilliant scientist but
also as a man of human warmth and greatness.” ¥

2.8 Life in Retirement

Soon afterward the Born’s left Edinburgh and settled in Bad Pyrmont, a spa in
West Germany, not far from Géttingen, where they built a small house. When they
left Edinburgh our book was far from finished. We corresponded about it, and 1
visited Born in his new home several times. Born was hoping that he and Mrs.
Born would be able to lead a more quiet life in Bad Pyrmont, but he told me on
one of my visits that this proved difficult to achieve. For example, soon after they
settled, in Bad Pyrmont, Born was invited to address a meeting of a West German
physical society. He declined the invitation, saying that he was too old to travel. He
received a reply stating that in view of this the meeting would be moved to Bad
Pyrmont!

§ From an introduction by Victor E. Weisskopf to an article by Max Born entitled “Man and the
Atom,” published by the Society for Social Responsibility of Science (Pamphlet #4) Southhamp-
ton, Pa., and the American Friends Service Committee, Philadelphia, Pa.
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Figure 12 Max Born in Bad Pyrmont feeding pigeons.

In 1954, the year after his retirement, Born was awarded the Nobel Prize. He
was, of course, delighted, but I am quite sure he felt, as many others did, that
this great recognition had come somewhat late. The Nobel Prize was awarded to
him for contributions that he made almost 30 years earlier. However, as his son
Gustav later noted in a postscript to Born’s memoirs [2, p. 296], it came at the
right time to add weight to his main retirement occupation, which was to edu-
cate thinking people in Germany and elsewhere in the social, economic, and po-
litical consequences of science and also of the dangers of nuclear weapons and
re-armament.

In 1957 I was a Visiting Scientist at the Courant Institute of New York Uni-
versity, still working on our book. One day I received a letter from Born asking me
why the book was not yet finished. I replied that practically the whole manuscript
was completed, except for a chapter on partial coherence on which I was still work-
ing. Born wrote back almost at once, saying something like, “Who apart from you
is interested in partial coherence? Leave that chapter out and send the rest of the
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Reprinted from New Scientist, January 13, 1966, Pages 74-78 Qm w ;
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By Professor Dennis Gabor, FRS
Department of Electrical Engineering, Imperial College, London

Figure 13 A dedication from Dennis Gabor.

manuscript to the printers.” Actually I completed that chapter shortly afterward
and it was included in the book.

It so happened that within about two years after the publication of our book
(in 1959) the laser was invented and optical physicists and engineers then became
greatly interested in questions of coherence. Our book was the first that dealt in
depth with this subject, and Born was then as pleased as I was that the chapter was
included.

Our book was also one of the first textbooks containing an account of holog-
raphy. Gabor was very happy about it. Later, when holography became popular
and useful, he sent me a reprint of one of his papers with a charming dedication
(Fig. 13).

As I approach the end of my reminiscences about Max Born, I would like to
say that I hope my talk conveyed to you the warmth and the affection with which
he remains in my memory, not only as a great scientist, but also as a kind and
remarkable human being. My feelings about our collaboration are well described
by exactly the same words that Born used when he spoke about his association with
David Hilbert, quoted earlier; namely that my appointment with him was precious
to me beyond description, because it enabled me to see and to talk to him every
day.

2.9 Olivia

Before ending I would like to show you a few pictures taken in Bad Pyrmont dur-
ing Born’s retirement and also to mention one more episode. One shows Professor
and Mrs. Born with one of their daughters, Irene. Some years ago I learned that
Irene is the mother of a lady who has achieved fame comparable to that of Max
Born himself, but in an entirely different field. I am speaking of the pop singer
Olivia Newton-John. Shortly after I learned that Olivia Newton-John was Max
Born’s granddaughter I was on a sabbatical leave at the University of Toronto.
Olivia was scheduled to give a concert in Toronto while I was there. I wrote to her,
told her I had collaborated with her grandfather in the writing of a book, and asked
her whether we could meet. I received a charming reply in which she invited me to
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Figure 14 Hedwig Born and Max Born, with their daughter Irene Newton-John in
Bad Pyrmont, 1957. (Credit: AIP Niels Bohr Library.)

Figure 15 Max Born in front of his library at his home in Bad Pyrmont.
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Figure 16 Max Born with two of his grandsons, Max and Sebastian (children of Gus-
tav) in Bad Pyrmont. (Credit: AIP Niels Bohr Library.)
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Figure 17 L¢fi: Olivia Newton-John, granddaughter of Max Born. Right: Max Born.
(Credit: Lotte Meitner-Graf’)
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meet her after the concert. We met then and talked mainly about her grandparents.
Before I left Olivia gave me two autographed photos of herself. Let me add that
to some of my students I am known not so much as the co-author of Principles
of Optics but rather as the person who knows Olivia Newton-John and who has a
picture of her hanging in his office signed “To Emil, Love, Olivia.”

I cannot bring you the voice of Max Born, but I will end my presentation with
one of the songs that made Olivia famous. (The lectures on which this article is
based concluded with an excerpt from the song “If You Love Me Let Me Know.”)
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~CHAPTER 35

WHAT POLARIZATION OF
LLIGHT IS: THE CONTRIBUTION OF
EMIL WOLF

Christian Brosseau

3.1 Introduction and Scope

Whenever I teach my polarization optics course, one of the central messages I try
to get across early is that polarization of light abounds with dichotomies. This has
been known for more than three centuries, and there is no question that it has gen-
erated a considerable amount of excitement among researchers in the last decades.
It is an aspect of the visual world detected by insects and many vertebrates other
than mammals but is hidden from us, its origins rooted deep in statistical physics
and electromagnetism. Its applications involve areas as diverse as photonics, in-
formation technology, and biology, yet its understanding is still incomplete. Before
starting to consider the details of the theory of polarized light, I would like to draw
the reader’s attention to a brief consideration of the historical background to illus-
trate that Emil Wolf is a most influential and contemporary theoretical physicist in
the development of polarization optics.

3.1.1 Pulling the strands of Emil Wolf’s contributions to
polarization optics

Emil Wolfis a living legend in the field of physical optics. Born in Prague, Czecho-
slovakia, Emil Wolf began research on the behavior and physics of light under the
auspices of Prof. Linfoot at the University of Bristol, U.K. After holding sev-
eral research positions (at Cambridge and Edinburgh), Prof. Wolf moved to the
United States (University of Rochester) in 1959, where he was soon making classic
contributions to the theories of coherence and polarization of light. Not only has

51
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Wolf’s productivity continued unabated, his work has been a turning point in the
history of modern optics.

Wolf’s ideas on partial coherence and partial polarization were first published
in his 1954 paper “Optics in terms of observable quantities,” [1] and later dis-
cussed in his 1959 magnum opus Principles of Optics [2] coauthored with Nobel
laureate Max Born, which is among, perhaps, five of the most famous books ever
written on optics. A generation of students (including my own when I was an un-
dergraduate) has learned the basics of optics thanks in no small part to courses
based on Principles of Optics. Through seven editions it has established an enviable
record for high-quality presentation, with the author showing a remarkable ability
to make both basic concepts and cutting-edge research topics accessible to read-
ers [3]. I can remember that this book was my first exposure to the amazing facts of
optics, and it also taught me some remarkable mathematics that I could actually see
for myself made sense. Wolf has also written standard works on a large variety of
topics ranging from medical imaging to astronomy, and a pioneering textbook [4]
on the coherence of light coauthored with the late L.eonard Mandel, which is to-
day the undisputed bible of the subject. His prolific publications have influenced
all aspects of the discipline and are actively discussed in academic literature (e.g.,
correlation-induced shift is now identified with the adjective “Wolf”), as well as in
engineering fields (e.g., diffraction tomography).

It is a daunting task to integrate the many facets of the extraordinary career of
Emil Wolf into a unified whole. Rather than trying to do that, I focus here on his
work on coherence and polarization, which were early influences on my interests
in optics. Wolf’s growing influence on the statistical description of polarized light
was recognized as long ago as 1954 [2], when he introduced a precise measure
of the correlations between the fluctuating field variables at two space-time points.
The idea of correlations represents a landmark in the history of polarization optics
and has been highly successful. Still, it was Wolf who gave us the alphabet from
which the field of coherence and polarization optics was written. We celebrate his
work and hope to live up to it in some small way.

3.1.2 Structure of the review

The remainder of this introduction presents an overview of the salient historical
and experimental facts and qualitatively describes the ideas and issues that have
been shown to be important for understanding the phenomenon of polarization. In
Sect. 3.2.1, it will be shown how the polarization and coherence concepts call for a
statistical method that can handle the second-order description of the fluctuations
of the electric field vector of light. A number of questions related to scalar invari-
ants are considered. Section 3.2.1 describes the statistical method in just the right
amount of detail for the reader to appreciate its use in polarization theory. The ap-
plication of the general concepts to the problem of light scattering is then given in
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Sect. 3.2.3. Motivated by the problem of multiple scattering of polarized light by a
spatially random medium composed of uncorrelated and noninteracting spherical
dielectric particles, the task of numerically establishing the size and polarization
dependence of the characterisc depolarization length is undertaken. To cope with
numerical difficulties encountered, a Monte Carlo technique is developed, which
allows us to study the statistical behavior of the wave propagation. With its help,
strong numerical evidence is found, suggesting that the the size of the spherical
particles and the optical depth play an important role on entropy production. It is
also shown that one of the most remarkable aspects of this problem where no en-
ergy exchange between radiation and scatterer takes place is that the stationary state
corresponds to both the state of minimum production of radiation entropy and to
the state of maximum entropy. Section 3.2.3 presents opinions on the current state
of the field as well as the areas of activity with the brightest outlook for future work.
The final section contains concluding remarks.

3.1.3 Historical overview

Polarization effects have historically captured the interest of physicists and it is
natural to look at the background research on this subject to see the progressive
development of ideas and concepts in their historical context.” A number of authors
have discussed the establishment of the facts of the past, and the importance and
unique value of archival research in this connection is in evidence throughout all
these works, Refs. [5—8] list a few of my favorites. The history of polarized light
is a long one and exciting applications for polarization of electromagnetic waves
continue to be discovered. While I am unable in this brief review to discuss it in

* At this point it may be worthwhile to pose a general question: Does one need to know anything
about the history of polarized light to appreciate the subject matter? In fact, there seems to be
a recent trend in textbooks to include snippets of history and biography of individual scientists.
This is certainly a harmless way to add human interest to what might otherwise seem to be
“dry” physics, but may not by itself make the subject matter more understandable. It is much
easier to convey the facts of Wolf’s life than to explain to undergraduates what he accomplished
physically. I note that aside from the human interest involved in biographical studies, there may
be some intellectual value in retracing the way optical ideas have developed. The development
is often messy, however. Occasionally good ideas emerge prematurely in obscure places and are
forgotten for a time, only to be rediscovered independently. Sometimes the original motivation
for an investigation looks a bit eccentric to later generations, as in the case of Paul Soleillet’s
approach to what we know as Mueller polarization matrices. But, in the end, one is often just
curious to know where the currently accepted ideas came from. Whatever one’s view may be
on the role of the history of optics in teaching or research, probably most people will agree that
it is more challenging to deal with the twentieth century than with the immediately preceding
centuries. Optics tends to be hierarchical, making it difficult to appreciate later work without a
substantial foundation in earlier work. Now that optics is developed more rapidly and in more
places by more people, tracing the development of an idea does not become easier.
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any depth, I shall mention three major breakthroughs to highlight recent work
in polarization optics. These are just a few of the high points; the list could be
extended much further [9]."

In the first, the evidence that light can be polarized was gleaned in 1669 by
Erasmus Bartholinus. By carefully studying crystals of Iceland spar (i.e., calcite),
he discovered double refraction. The optical properties of crystals gave the start-
ing impetus of the discipline of polarization optics. After Bartholinus’s discovery,
Huygens’s goal of research was to interpret the double-refraction phenomenon
from his conception of his spherical lightwave (i.e., envelope construction), and he
observed that each of the two beams arising from the double-refraction phenom-
enon can be extinguished by passing through a second calcite crystal that is rotated
about the direction of the beam. His investigations also showed that the two beams
have different polarization directions. In 1808, Etienne-Louis Malus, a military
French engineer, discovered the polarization of natural light by reflection while ex-
perimenting with a crystal of Iceland spar and light reflected by the windows of
the Palais du Luxembourg in Paris. By extensive experimentation, he showed by
purely geometric reasoning how to express the intensity of light emerging from
a polarizing crystal when the light it receives is linearly polarized along a direc-
tion making a specific angle with its axis, i.e., Malus’ law. A major advance in the
understanding of light polarization was made by Augustin Jean Fresnel. In 1823,
he derived on the basis of the elastic theory of ether’ his famous reflection and
transmission formulas for a plane wave that is incident on a static and plane inter-
face between two dielectric isotropic media. To Fresnel credit must be assigned for
discovering the modern concept of polarization and stimulating the efforts that put
the wave theory of light on a firm foundation. In the years 1812—1815 came the im-
portant milestone by the French phycisist Dominique Francois Arago at the Paris
Observatory. On the theoretical side, his principal contribution was the discovery
of the interference laws published in a joint paper with Fresnel, which played a
key role in the demonstration of the transverse nature of lightwaves propagating
in free space. Another major advance to the field came by Sir Georges Gabriel
Stokes.* Stokes introduced four measurable quantities that now bear the name of

A note on referencing policy: computerized literature searches citing “polarized light” as key
words find thousands of articles that are scattered through the literatures of different subareas
of physics, including optics, astrophysics, biology, and materials science. Although I have tried
to identify original key papers whenever possible, our references put more emphasis on recent
works from which earlier papers can be found. Obviously the choice of these is highly subjective
and indeed arbitrary, and I hope that the many authors whose papers I have failed to reference
will not attribute this to malice.

TThe concept of an ethereal medium, filling space, was formulated by Descartes two centuries
before.

#The name of Stokes, a contemporary of Maxwell, has become well known to generations of inter-
national scientists, mathematicians, opticists, and engineers, through its association with various
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Stokes parameters for describing properties of polarized light. Before the entry of
the seminal electromagnetic theory of Maxwell, the gauntlet was thus thrown, and
a search for the correct physical mechanism began. During this time the predom-
inant belief in the field was that the transverse wave theory of light could provide
an understanding of the major optical phenomena discovered at the the time of
Maxwell’s treatise: propagation, polarization, diffraction, and interference. How-
ever, there was little agreement as to the details of how this worked, and in spite of
many difficulties, the mechanical theory of the elastic ether persisted.

In the next and second step based on the theory of electromagnetism, polariza-
tion properties are closely connected to the electric field vector distribution. The
quest for a better understanding of the macroscopic world in terms of underlying
fundamental microscopic laws has informed the history of science and natural phi-
losophy. The best theories are the ones that have settled, either by virtue of their
actual genesis or more commonly through their subsequent evolution, at the right
level of generality. They must be sufficiently general to encompass problems of
broad interest and generality, but not so super general as to allow for an expanse
of phenomena not amenable to any sort of reasonable taxonomy. There is of course
a litany of subjects of questionable merit that fail to satisfy one of these criteria
(and sometimes both), but in these terms it is difficult to imagine one that meets
them more spectacularly than Maxwell’s theory of electromagnetism. Modern sci-
ence has provided an admirable powerful theory, and mathematical tool as well, to
address this issue in a sensible and productive way, the gift of Maxwellian Electro-
dynamics.®

physical laws and mathematical formulas. In standard textbooks of physics, mathematics, and
engineering, we find Stokes law, Stokes theorem, and the Navier—Stokes equations, in addition to
the Stokes parameters. His major advance was in the wave theory of light. He was by then well
established at the University of Cambridge (where he spent all of his working life occupying the
Lucasian Chair of mathematics from 1849 until his death in 1903), examining mathematically
the properties of the ether, which he treated as an incompressible elastic medium. This enabled
him to obtain major results on the mathematical theory of diffraction, which he confirmed by ex-
periment, and on fluorescence, which led him into the field of spectrum analysis. His last major
paper on light was his study of the dynamical theory of double refraction, presented in 1862. As
a special comment, it is interesting to quote to the reader the leading article of The Times, which
appeared two days after his death: “It is sometimes supposed—and instances in point may some-
times be adduced—that minds conversant with the higher mathematics are unfit to deal with the
ordinary affairs of life. Sir George Gabriel Stokes was a living proof that if the mathematician is
only big enough, his intellect will handle practical questions so easily and as well as mathematical
formulas.” See also Lord Kelvin, Obituary of Sir G. G. Stokes, Nazure 67,337 (1903), and Lord
Rayleigh, Obituary of Sir G. G. Stokes, Proc. Roy. Soc. 75, 199 (1905).

¥ Among the enduring legacies of nineteenth-century science, James Clerk Maxwell’s equations
of electrodynamics have long held a preferential place in the hearts of physicists. One of today’s
more outspoken physicists, Steven Weinberg, has argued that the equations constitute a noncon-
tingent fact, without which contemporary physics would be unimaginable.
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A chief contributor to the fundamental aspects of early electromagnetic theory
was the British physicist Michael Faraday. In 1831, he discovered electromagnetic
induction, subsequently explained para- and diamagnetism and interpreted them
through his field theory. When Faraday postulated the physical laws of electro-
magnetism, he had in mind a mechanical picture, deduced from geometric rea-
soning, using the two concepts of lines of force traversing all space and actions-
at-a-distance exerted between the particles in a medium. In 1864 came another
turning point: the Scottish physicist James Clerk Maxwell completed a six-page
memoir entitled A Dynamical Theory of the Electromagnetic Field, in which he devel-
oped the mathematical theory required for the description of how electromagnetic
waves propagate [10]. His eponymous equations summarize the fundamental re-
lations between electricity and magnetism and became the cornerstone on which
generations of scientists have based their theoretical studies. Maxwell put Fara-
day’s concepts into the elegant mathematical form of four differential equations,
and one of his major innovations was to introduce the notion of displacement cur-
rent. Indeed, were it not for the displacement current, it would not be possible to
deduce from Maxwell’s equations that electromagnetic waves have the property of
light. His electromagnetic theory was confirmed by Heinrich Hertz’s discovery
of electromagnetic waves,” which in turn led to remarkable advances in physics,
astronomy, and technology.” According to Einstein, Michael Faraday,* along with

“In the years 1887 and 1888, Heinrich Rudolf Hertz, a German physicist at the Technical Uni-
versity in Karlsruhe, produced and detected electric waves in air, demonstrating the application
of the concepts of the electromagnetism theory to the microwave and radio regions of the spec-
trum. In this respect, it is also worth noting the close intertwining of the theory and experiment in
nineteenth-century electrodynamics, which is distinguished by the fact that all leading theorists
were active in the laboratory. Today, Hertz is remembered for the unit of frequency named after
him.

TIn the 19th century, the value of Maxwell’s work was appreciated by experts working on similar
problems, but in the scientific community as a whole his achievements were less famous than
those of Kelvin or Helmholtz. For example, it is amusing to note that when Albert Einstein
studied at the Swiss Federal Polytechnical School (ETH), Maxwell’s electromagnetic theory was
not covered in any of the courses there so he had to study it on his own.

# Writing in a special issue of the London Times in 1931 to celebrate the centenary of Michael
Faraday’s discovery of electromagentic induction, Lord Rutherford said “The more we study the
work of Faraday, with the perspective of time, the more we are impressed by his unrivalled genius
as an experimenter and a natural philosopher. When we consider the magnitude and extent of his
discoveries and their influence on the progress of science and of industry, there is no honor too
great to pay to the memory of Michael Faraday—one of the greatest scientific discoverers of all
time.” In the physical sciences, apart from inventing the dynamo and the transformer, Faraday
established the identity of electricity from various sources as well as investigating the discharges
of electricity through gases, electrostatics, electrodeposition, and discovering the magneto-optical
effect, which was the first proof that light had a magnetic component. But it is not just his ex-
traordinary experimental skills and intellectual power that has made Faraday so fascinating to all
succeeding generations; he also possessed intuition, insight and moral perfection. Aldous Huxley
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James Clerk Maxwell, was responsible for the greatest change in the axiomatic
basis of physics since Newton [11].

The publication of Poincaré’s great treatise Théorie Mathématique de la Lumiére
in 1892 broke a new intellectual ground.® In his book Poincaré introduced the
Poincaré sphere and the complex plane representations to specify the state of po-
larization. Poincaré’s heavy use of geometry, including many unfamiliar proposi-
tions, makes his analysis nearly impenetrable to the contemporary reader. But it was
Poincaré, more than any other, who truly saw the physical implications of geome-
try in polarization optics. Using a stereographic projection, he mapped each point
on the plane into a sphere whose points are in one-to-one correspondence with all
the possible states of polarization of a light beam. One of the conveniences of the
Poincaré sphere is that it provides an intuitively geometric view of the transforma-
tion of a polarized light when it interacts with optical devices in terms of rotations
of states.

Near the end of the nineteenth century, John William Strutt, the third baron
Rayleigh (more familiar as Lord Rayleigh), published many fascinating articles in
optics. One of his major contributions came in 1871, when he derived the polariza-
tion at 90-deg law, the inverse fourth-power law for the intensity of light scattered
by particles whose size is much smaller than the wavelength of the light and ex-
plained that the degree of polarization of the scattered light depends on the angle
of scattering from the elastic-solid theory of the “luminiferous ether.”

The third step in the development of a detailed, predictive understanding of
polarized light, which took place between 1905 and 1954, stands out as one of the

reflected on this “conquering man of genius” in 1925 and wrote: “If I could be born again and
choose what I should be in my next existence, I should desire to be a man of science .... But
even if I could be Shakespeare, I think I would still choose to be Faraday. True, the posthumous
glory of Shakespeare is greater than that of Faraday.. .. Posthumous fame brings nobody much
satisfaction this side of the grave.”

§ Mathematician of the first rank, Jules Henri Poincaré is one of France’s greatest scientific genius
of the nineteenth century, the range of his interests and achievements being hard to conceive.
He is a fruitful subject for historical enquiry, as he left behind a large archival trail. With his
polymathic interest, he has attracted much attention, e.g., H. Gispert, “La France mathématique:
La Société Mathématique de France (1870-1914),” Cahiers d’Histoire et de Philosophie des Sciences
34,11 (1991). Poincaré made many contributions to mathematics and to other sciences, including
celestial mechanics, fluid mechanics, the special theory of relativity, and optics, to cite but a few;
he is often described as the last universalist in mathematics. As a Poincaré aficionado, I strongly
believe that the questions posed and the techniques developed to answer them are thoroughly
modern. Poincaré wrote in Mathematical Definitions in Education, Georges Carré, Paris (1904):
“It is by logic we prove, it is by intuition that we invent.” The breadth of his research led to
him being the only member of the French Academy of Sciences in every one of the five sections
(geometry, mechanics, physics, geography, and navigation) of the Academy. Note that Poincaré’s
family produced other men of great distinction during his lifetime, e.g., Raymond Poincaré, who
was prime minister of France several times and president of the French Republic during World
War L.
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most exciting advances in theoretical optics of the last half of the last century. It is
interesting to remember that, at the turn of the century, theorists believed that op-
tics was a mature field and nobody could believe that optics would return from the
physics rearguard to the forefront. The idea that polarized light is a “static” geo-
metric concept has persisted since the time of Bartholinus. One interesting thing is
that it seems that most scientists considered that the world is deterministic—in the
sense of Isaac Newton. Yet one of the thrusts of twentieth-century physics has been
that the world is not. The Heisenberg uncertainty principle, statistical mechanics,
and many other parts of the modern theory give us substantive reason to think
that certain forms of physical information are unknowable. In particular, statistical
physics is one of the pillars of modern physics, explaining the macroscopic world
on the basis of the dynamics of its microscopic components. It was only in the twen-
tieth century that polarization evolved from a geometric concept into a statistical
concept, the analysis of radiation fluctuations being powerfully addressed.

The deepest and most revolutionary insights arose from statistical physics.
These are at two levels. First is the very basic fact that probability is central to mod-
ern physics. The electric field of light is then described as a random process. The
introduction of probability into the fundamental nature of the physical world by
Maxwell and Boltzmann provided part of the foundation for the so-called “proba-
bilistic revolution”” that affected all areas of science between 1840 and 1940. At this
point, it is worth noting that James Clerk Maxwell allowed probabilistic physics to
bring him to the verge of mysticism: “It is the peculiar function of physical science
to lead us to the confines of the incomprehensible, and to bid us behold and receive
it in faith, till such time as the mystery shall open.” At that time, the use of statis-
tics as a mathematical tool of all the sciences provoked passionate disputes between
philosophers and physicists. The second level of insight is that autocorrelation and
cross-correlation functions between field variables at two space-time points were
introduced to describe correlations of random processes in electromagnetic fields.
An influential result was the introduction of the density matrix formalism by John
von Neumann, which has much to do with the coherency matrix formalism pio-
neered by Norbert Wiener in 1930.7

* The interested reader may consult The Probabilistic Revolution, edited by Lorenz Kriiger, Lorraine
J. Daston, Michael Heidelberger, Gerd Gigenrenzer, and Mary S. Morgan, MIT, Cambridge,
MA (1987).

TWhat is seldom appreciated is that Wiener belongs to that small group of theoretical physicists
who shaped modern coherence theory. Although Wiener gave real grounds for the concept of
coherence, his ideas did not gain general recognition. To quote Levinson in Selected Papers of
Norman Levinson, N. Levinson, J.A. Nohel, and D.H. Sattinger, Eds., Vol. 1, p. 13, Birkhiuser,
Boston, MA (1998), “Most of Wiener’s important work was inspired by physics or engineering
and in this sense he was very much an applied mathematician. He formulated his theories in
the framework of rigorous mathematics and as consequence his impact on engineering was very
much delayed.”
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This brings us to the modern concept of polarization of light. Observe that the
statistical nature of quantum mechanics is different from that of classical physics,
as it invokes variables with values that are not merely unknown but unknowable.
Theorists quickly appreciated the significance of this result, and by the middle of
the twentieth century the development of this field was coming to a close. An im-
portant aspect in interpreting the statistical properties of light has been pointed out
by Emil Wolf. In 1954, Wolf launched the idea that “... correlation functions of
optical fields, not the fields themselves, provide a description of optical phenomena
in terms of observable quantities” [2]. The foundations of the modern polariza-
tion theory were laid. The starting point for most calculations having a bearing on
optical coherence theory is the Wolf coherency matrix. Wolf also introduced more
general three-dimensional tensors for dealing with nonplane waves. The statistical
description of the properties of light provided a key impetus for a new generation
of high precision experiments, e.g., the Hanbury-Brown and Twiss experiment.
With the year 1954 came another big step in optics, when Charles Townes and his
coworkers realized the first maser. This laid eventually the ground work for devel-
opment of the laser, but this is another story [12]. Thus in the early 1960s, the
conceptual basis of the modern theory of light polarization was thoroughly formu-
lated.

Other notable contributors in the story of polarized light are Paul Soleillet, who
is now largely forgotten but was eventually the discoverer of what we know as the
Mueller polarization matrix; Francis Perrin, whose meticulous work in the study of
the symmetry property of scattering by particles was very important; Robert Clark
]ones,§ who invented the Jones calculus in polarization optics; Hans Mueller, who
described the effect of nonimage forming optical systems and scattering media in
terms of the Mueller formalism; Edwin H. Land,” who invented the sheet po-
larizers; van de Hulst, who explained the polarization characteristics of the glory;
S. Pancharatnam, who introduced the concept of spectral functions to deal with the
description of the polarization properties of a polychromatic beam and eventually
was first to introduce the concept of geometric phase® in his study of the interfer-

8 Prof. Russell Chipman kindly informed readers that Robert Clark Jones is still living in the
Boston area.

T Edwin H. Land received more than 500 patents related to different areas of research, including
polarization, photography, and human color vision. The interested reader is referred to the special
issue of Optics & Photonics News 5, 9 (1994), dedicated to the memory of Land in recognition of
his pioneering contributions to science and technology.

#The geometric phase concerns the phase change of a light beam whose polarization state is made
to trace out a cycle on the Poincaré sphere. Its quantal counterpart was discovered by Michael
Berry, who proved the existence of geometrical phases in cyclic adiabatic evolutions. It is remark-
able that when Pancharatnam discovered this important effect, he was only 22 years of age. The
interested reader may consult M.V. Berry, Current Science 67,220 (1994), and Geometric Phases in
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ence of light in distinct states of polarization; and Richard Barakat,” who added
the concept of spectral coherency matrix from a different point of view than the
one introduced by Wiener.

The discovery of the laser brought optics back to prominence. There followed
the discovery of of nonlinear optics, coherent optics, and quantum optics. Although
there are still open questions about the details of the quantum description of polar-
ization, considerable progress has been made. Polarization optics today has reached
maturity; certainly the future of polarization optics will be as exciting and fruitful
as the past has been.

3.2 Basic Principles and Some Applications

The above brief account suffices to set the stage for the main subject. However,
one of the most difficult parts of learning polarization optics is to get a feel for how
abstract formalism can be applied to actual phenomena in the laboratory. This sec-
tion has three basic objectives. The first of these is to clarify operationally what is
really meant by polarized light. This section does not attempt to be a comprehen-
sive review of polarized light and of its interaction with optical systems. Rather, it
is intended to be tutorial in nature, and the intended reader is a graduate student
about to embark on research, either experimental or theoretical, in this area. The
goal therefore has been to set out as clearly as possible a set of concepts basic to the
understanding of light polarization, and to discuss how they relate to existing ex-
periments. Related to this, the second objective is to lay out the physics of multiple
scattering of polarized light (in the visible range) in disordered arrays of dielectric
scatterers. The discussion is limited to the particle size and state of polarization
dependence of the depolarization lengths. The third and final objective is to ex-
plain in direct physical terms why the concept of the scalar invariant is important
to describe the second-order statistics of the electromagnetic field.

3.2.1 Polarized light: a statistical optics approach
What is the nature of polarized light? This simple question is, in fact, hard to

answer from either the theoretical or observational point of view. However, it is of
the utmost importance if we really want to detect and predict the consequences of

Physics, edited by A. Shapere and E Wilczek, World Scientific, Singapore (1989), for historical
comments on the development of geometric phases in polarization optics.

* Barakat was a hero of mine of whom I had read many pioneering papers. When I came to Har-
vard University in the beginning of 1989 as a postdoctoral fellow, I experienced the privilege of
enjoying such collaboration. One lesson I understood from Dick’s way of working is that it is
more useful to learn from one’s peers than from one’s teachers. 1 have already given elsewhere,
i.e., C. Brosseau, J. Opr. A: Pure Appl. Opr. 2, R9—R15 (2000) an account of Barakat’s contribu-
tions to polarization optics.
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polarized light interacting with an optical system or a scattering medium. Before
we jump into the physics of polarized light, it will help in getting started if we have
in common a bit of vocabulary indicating what the different concepts will mean
here.

The objective of this section is not a review of the theoretical exploration of the
coherency (density) matrix, which has been done extensively in the past [4,7,8].
Instead the reader is presented with resources adequate to generate a basic famil-
iarity with the principles and language of density matrix theory. I have discussed
statistical optics concepts and their implications to polarization optics at length else-
where [5], although there is still more to say. For technical details of many of the
topics discussed here, the reader is referred to [1,4,5]. The usual development is
in terms of the coherency matrix @, but in order to deal with dimensionless forms
of the Stokes parameters we have found it convenient to employ the density matrix,
Le.,

N
(@)

approach, where tr denotes the trace of a matrix.

It has gradually become clear, building on pioneering contributions of Falkoff
and MacDonald [13], Fano [14], and Wolf [4,7], that the density matrix formal-
ism has a broad range of applications in the theory of partial coherence of optical
fields. Because of the close analogy that exists between the theory of partial coher-
ence and the theory of partial polarization, one might expect that the density matrix
is also a workhorse in polarization theory. In that theory, diagonal (respectively off-
diagonal) elements of the density matrix elements are interpreted as autocorrelation
(respectively cross-correlation) functions between the random components of the
analytic signal representation of the electric vector at a particular point in space. It
is worth noting that this approach is restricted to second-order statistics of the fluc-
tuating field: the polarization density matrix D is a 2 X 2 matrix (hereafter, noted
D,) and is a complete description of a Gaussian distributed plane wavefield. For a
non-Gaussian optical field, higher-order statistics of the electromagnetic field is re-
quired; however, the second-order approximation may still be a good one provided
corrections due to higher-order correlations are small. The theoretical discussions
up to now have mainly dealt with light in the form of plane waves. This is due,
in part, to the fact that the polarization states of a plane wave can be described by
means of the Poincaré sphere representation, which has a simple topology, and in
part, to the fact that the assumption of plane wave leads to results adequate for most
practical applications. Here we wish to calculate the entropy of a partially polarized
wavefield, not necessarily plane. To this end, we will consider polarization density
matrices DN for arbitrary V.
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3.2.1.1 Lie group expansion of the density matrix and Stokes
parameters

Consider a narrow band optical field that can be represented by an ensemble of
realizations, which we shall assume to be statistically stationary, at least in the wide
sense. Fach realization of the fluctuating electric field vector is represented by a
complex analytic signal. The Stokes parameters, defined as the covariances of the
analytic signal components, are the observables of the field vector at optical fre-
quencies. The key mathematical idea utilized here is that the available information
on the wavefield is the density matrix that describes the second-order stochastics
of the electric field components at a given point in space. So far no assumption
has been made about the statistics that governs the light fluctuations: we limit our
description of the statistical properties of the underlying radiation fields to second
order.

By definition, DN is nonnegative definite and Hermitian: D can be diagonal-
ized by a unitary transformation and its N eigenvalues are real and nonnegative.
On the basis of this description, we introduce the normalized Stokes parameters

®](' ), which are defined by the scalar coefficients in the expansion of Dy in terms
. . . N .

of the N* Hermitian, trace orthogonal and linearly independent O](» ) matrices.

An important point to appreciate here is that these real parameters form a quo-

rum of observables that completely specify the state of polarization of the optical

field. Let us formally introduce the N x NV polarization density matrix as a linear
combination of N? independent Hermitian matrices:

N3_1
_ 1 (V) (V)
DN—NZ@ 0;". (1)
=0

Equation (1) is known as the special unitary group SU(V) expansion of the polar-
ization density matrix DN. It is convenient to work with a normalized version of

the Stokes parameters ®(-N), since they take a dimensionless form. The expectation
value of a physical observable, characterizing the light at any point, described by
the density matrix Dy is given by

M\ _ . (a™) — o™
(0]. >—tr(0j DN)_@]. , @)

where the angular brackets in the left-hand side denote the average taken over the
statistical ensemble representing the fluctuating field. Two important points should

. : N . :
be stressed. First, it is usually convenient that one O](- ) be the unit N x N matrix,

. N : : .
indicated as Og ). The second important feature is the trace relations, namely the
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normalization condition
tr (O](N)) = NS]() (321)

and the orthogonality condition

tr (0](” ol )) = 25 (3b)

For N = 2, O](-Z) are the Pauli matrices. Other sets include the Gell-Mann matrices
for N = 3 and the Dirac matrices for N = 4. At this point it is also worth com-
menting on several important properties of DN. Scalar functions of Dy that are
invariant, with respect to all transformations, Dy — UDNU™!, where U is a gen-
eral unitary matrix, are the scalar invariants of D. Simple examples are the trace
and the determinant of DN. The Cayley—Hamilton theorem implies that these ba-
sic invariant quantities can be obtained by direct evaluation of the traces of powers
of DN. The physical significance of these scalar invariants as measures of the de-
gree of polarization of the optical field is discussed in the next sections.

3.2.1.2 Entropy of a partially polarized light

We consider an optical field in the form of plane waves propagating in some direc-
tion to be characterized by the unit vector €3. The transverse field is resolved into
two orthogonal components along the directions characterized by the unit vectors
e; and e; corresponding to orthogonal linear polarizations. Note that all matrix
quantities will be defined in this linear polarization basis. At this point, we recall
that we employ normalized Stokes parameters (0;) = S;/Sg, where S;,;7 = 0, 1,2, 3
is the notation for the usual Stokes parameters having the physical dimensions of
intensity (or irradiance). The physical interpretation of these parameters is as fol-
lows: S is the total intensity, S1 describes the excess of linearly horizontal polarized
light over linearly vertical polarized light, S, specifies the excess intensity of 45 deg
linearly polarized light over —45 deg linearly polarized light, and S3 is the excess
of right over left circularly polarized light [1,5].

Our starting point is the von Neumann entropy S of the radiation field in the
impure (mixed) state represented by the density matrix D,, which is defined ac-
cording the usual dimensionless version appearing in quantum statistical mechan-
ics as

§ = —tr[D;In(Dy)], “4)
where the density matrix reads, in the linear polarization basis, as

1|: 1+ (o) (0'2)—1'(0'3)]. )

D ==
22 (oy) +ios) 1-(0y)
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The von Neumann measure is a quantitative measure of the amount of information
that would be gained by switching from a mixed state to a pure state. This orthog-
onal decomposition is the most economical representation of D, (in the sense of
entropy minimization) [5]. Several properties of § are of importance for us. First,
it is worth observing that Eq. (5) is basis independent (i.e., the entropy remains
invariant under a similarity transformation of the density matrix D; — RD,R™!).
This is expected since polarization properties must be unaffected by the particular
choice of basis. Second, we note that the mapping of D, — S(D-) is concave: the
entropy of a mixed state is greater than the constituent entropies weighted as in
the mixing. Consequently, taking linear combinations 2D of density matrices

D,; with real positive coefficients 0 < p; < 1 summing to unity ) ;i = 1, we have
D 5iSy) <SM) <> pSMy) - Y pln). (6)
J J J

Equation (6) is an optimal inequality in the sense that equality holds on the left if
all D; are equal, and on the right if all D; have disjoint support. Let us remark
in passing that both matrices D, and In(D),) are diagonalized by the same unitary
transformation; this comes from the fact that D, commutes with In(D;).

Given these background remarks, we now sketch two simple approaches for
deriving the degree of polarization dependence of the radiation entropy. Actually,
the methods complement each other in that the first approach involves an eigen-
value problem, whereas the second approach involves a geometric property of the
set of polarization states. To begin with, we express Eq. (4) differently in the rep-
resentation in which D, is diagonal. Denoting the eigenvalues of D, by A;, the
entropy can be expressed, via Eq. (4), as

§=-> N(A). (7)
J

Consequently the problem shifts to the analytic evaluation of these eigenvalues. In
this case, computation of these eigenvalues via Eq. (5) gives

1£P
N=— (®)

where we have set
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which is the degree of polarization of the plane wave. Now by substituting Eq. (8)
into Eq. (7), the result takes a relatively simple form, namely,

S(P) = -In[s(P)], )

with

sP)=-[1-Pl T (1+P) 7. (10)

N —

Thus a closed-form equation has been arrived at: it is a measure of purity of the
states of polarization. Equation (9) demonstrates that one needs only a single para-
meter, P, to characterize the entropy of a radiation field in the form of plane waves.
The entropy varies between 0 and In(2) inclusive and is displayed in Fig. 1 as a
function of the scalar invariant. From Fig. 1 we observe that the curve undergoes a
monotone decrease as the degree of polarization is increased. It does not differen-
tiate pure states, i.e., irrespective of the form of the pure state of polarization con-
sidered, linear or circular, we have § = 0. These symbols denote respectively linear
horizontal, linear vertical, linear +45 deg, linear —45 deg, right-handed circular
and left-handed circular states of polarization. Minimum entropy states define the
pure states and are located at the surface of the so-called Poincaré sphere. An-
other interesting limit is obtained by considering the maximum entropy state cor-
responding to the completely unpolarized state, located at the center of the ball 3.
In all other cases such 0 < § < In(2), mixed states are the points inside the ball
»3 [5]. As pointed out earlier, this property reflects the isotropy of the Poincaré
sphere =7 (Fig. 2).

An alternative approach to the computation of the entropy is via the convex-
ity property of the states of polarization (Fig. 3). This property is of a topological
nature and may be simply visualized through the Poincaré sphere representation

0P
0.6 RS

0.5 \

0.4
S o \
0.2
N\

0.1

0.6 1.0

p=fetr[(0.)] -1}El

Figure 1 Plot of the entropy S as function of the degree of polarization P, i.e., scalar
invariant tr(D%), of a plane wave.
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Sy _
{50) —(Gl}

ot

Figure 2 The Poincaré sphere E% is the unit sphere surrounding the origin of the
Cartesian coordinate orthonormal basis (e, e;). The normalized Stokes parameters
[(O1),(02),{03)] T constitute the components of the Poincaré vector u that represents
the state of polarization of an arbitrary pure state of polarization (Ju| = 1). The longi-
tude 21 and latitude 2 of point M are related to the azimuth and the ellipticity angles
of the polarization ellipse of the wave. Fach point on £7 corresponds to a unique state of
polarization. The north pole N ([0,0,1]7) represents left circularly polarized light. The
south pole S ([0,0,—1]7) represents right circularly polarized light. Points on the equator
(2x = 0) represent linearly polarized light. Elliptical polarization states lie between the
poles and equator. The positive directions of the angle 21 and 2 are defined according
the adopted sign convention.

embedded in the three-dimensional Stokes space. For instance, the Krein-Millman
theorem, which states that a compact convex set is completely determined by its ex-
treme points, implies that every mixed state can be written as a nonunique convex
combination of pure states. States of polarization specified by D, form a convex
set with pure states being the extremal points of the set. Here the convex set of
states possesses two strata of dimensions 2, Ef, and 3, E%, respectively [5]. We
can also state a useful theorem that will be employed in the subsequent analysis:
any mixed state can be uniquely decomposed into a purely polarized part and an
unpolarized part. The relative weight of each component is determined by the de-
gree of polarization P. Thus the density matrix of any mixed state is given by a
convex sum

D, = PD;, + (1-P)Dy, (11)

with Dy, = 1/20. Once this is done, it becomes straightforward to derive the
entropy. Upon substituting Eq. (11) into Eq. (4), we explicitely obtain Eq. (9).
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Figure 3 Schematic illustration of the convexity property of the set of polarization states
on the unit ball T7. Pure states correspond to surface points (e.g., A) and mixed states
to interior points (e.g., M). The partially polarized state, described by point M, is repre-
sented by the vector OM whose length is the degree of polarization P.

3.2.1.3 Thermodynamics of a radiation field

Before we can proceed any further, we are naturally led to inquire whether a more
general thermodynamic treatment of partial polarization exists. The purpose of this
section is to present such treatment. We first wish to introduce the analogy of the
two-level description of a partially polarized wave with a one-dimensional Ising
spin system in contact with a heat bath. The Hamiltonian assigned to a particular
configuration of spins is =/ Y i) 0i9j> with each site rj having a spin 0; = £1.
The expression (7) refers to nearest neighbors 7 and ; sites and J stands for the
spin-spin coupling. After some calculations, it can be shown that the entropy per
spin of such a one-dimensional system may be expressed as

S
Ni,é) = In[2cosh(y)] —ytanh(y), (12)

where y = J3, B = 1/(#T) is the inverse temperature and £ is Boltzmann’s con-
stant [5,16]. By a straightforward calculation, Eq. (12) can be verified to be iden-
tically equal to Eq. (9) if one makes use of the following expression:

1_11 1+ P 13
;—5[“(—1_13)]’ (13)

and sets T = £7'/f3, which defines an effective polarization temperature. It is to be
emphasized in connection with Eq. (13) is that it should not be confused with the
radiance temperature obtained using Planck’s spectral law. In Fig. 3 we depict the
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behavior of P as a function of P. We first observe that T is a monotonic decreasing
function of P. It also clearly shows that T ~ P! for very small values of P and
we observe a dramatic change as P approaches 1 from below. At this point two
comments are in order. Just as in the study of the Ising system, one can determine
the thermodynamic functions for the partially polarized radiation field. Using the
thermodynamics of the canonical ensemble the partition function is given by

7 =201-P¥T. (14)

Equation (14) can be used to find other thermodynamic quantities such as the free
energy and the internal energy [5,16]. Similarly, as one defines in thermodynamics
the equilibrium temperature such as 1/7" = 0S/0U, we may prove that the polar-
ization temperature verifies 1/T = 0S/0U = —08/0P. The “specific heat” can be
found by a simple expression:

1-P?
Tz

C= . (15)
For later purposes it will be also useful to consider a correlation length by analogy
with the Ising model. We assume a finite correlation length, for S(r), where as
usual is defined by the following expression

(568t ~ e - 22, (16)

Upon making the substitution, we found that the correlation length behaves as
[In(P)]~!. At small P, we therefore expect the correlations to decay to zero. We
will use this expession explicitly in Sect. 3.2.2.2.

While interest has been focused here on the plane wave solution (N = 2), it
1s interesting to note that Brosseau [5] has recently discussed the general case
and showed that the entropy depends NV — 1 scalar invariants and not on the full
N invariants. In this author’s opinion, there is no clear a priori justification to
study, for partial polarization purpose, high dimensions (N > 3) of the SU(V)
parametrization. However, calculations by Brandenberger et al. [17], have shown
that the entropy of stochastic fields with many degrees of freedom has interesting
applications in general relativity and cosmology; thus an a posteriori justification
for its interest can be claimed.

To summarize, this section contains two important features that motivate our
formal considerations below. First, we introduced the concept of scalar invariant.
This is undoubtedly the most remarkable property of the density (coherency) ma-
trix description of the electromagnetic field. Conceptually, this is the connection
between the geometric definition of polarized light and its algebraic representation
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in terms of second-order statistical moments. Second, we found that these scalar
invariants completely define the entropy of the stochastic radiation field. Thus, we
anticipate that depolarization is connected to a process of entropy production.

3.2.2 Multiple scattering of polarized light by spherical diffusers

Apart from these interesting problems, a long-term goal of our investigations is the
explicit consideration of polarization effects in multiple scattering of light. Multi-
ple scattering of an initially pure state of polarization from a slab composed of
randomly distributed scatterers gives rise to observable phenomena that cannot be
explained by single-scattering arguments. Scattering and absorption by particles is
traditionally handled using Rayleigh or Mie theories.

We now come to the important problem of characterizing the entropy pro-
duced by a depolarizing radiation/matter interaction. Despite intensive studies of
this problem, progress in this area has been slow. There have been some efforts
to determine the entropy transformation by scattering in specific cases, but no rig-
orous calculation of the entropy production has been presented in the context of
multiple scattering of light by randomly positioned ensembles of particles.

In recent years, new physical effects have been identified in elastic multiple
scattering of light by ensembles of particles, e.g., significant backscattering en-
hancement observed in the form of a well-defined narrow peak in the angular dis-
tribution of the far-field intensity of the incoherent component of the scattered light
at scattering angles near 180 deg [18]. In this section, quantitative expressions are
derived for the degree of polarization when incident light in the form of pure states
is incident on a spatially random optical medium. The purpose of this section is to
analyze in detail the behavior of entropy production during the irreversible evolu-
tion of the state of polarization. More specifically, we investigate the consequences
of multiple scattering of light by a dense random collection of dielectric spheres on
entropy production.

It should be noted, at the outset, that this situation differs from those consid-
ered by Enk and Nienhuis [19], and Eu and Mao [20]. The former were mostly
interested in investigating the connection between entropy production and kinetic
effects of light on atoms or molecules, such as laser cooling and macroscopic flows
in gases. The latter introduced a set of semiclassical Boltzmann equations to de-
scribe the interaction of a nonequilibrium photon (ideal) gas with matter. What we
are principally concerned with is the relation of the depolarization of an incident
pure state of polarization to a process of entropy production and the determina-
tion of its characteristic length scale. Most of the theoretical work on the transport
properties of multiple scattered light has used two characteristic length scales: the
elastic mean-free path ¢, and the transport mean-free path £, which is defined as
the length over which momentum transfer becomes uncorrelated. Using a Monte
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Carlo simulation, we discovered recently that another length occurs in the prob-
lem, the depolarization length &; (the index 7 = L, C refers to linear and circular
incident pure states of polarization) [21].

There have been two different approaches to the important problem of
irreversibility of light scattering. The first approach was initiated by Chan-
drasekhar [22] and Rozenberg [23] many years ago on the basis of the Boltz-
mann equation for an isotropic scattering medium and followed by Callies [24]
and by Gudkov [25]. The second approach was initiated by Jones [26]. In the
first approach, a kinetic theory for treating the optical transport by a phenomeno-
logical radiative transfer approach has been introduced. In these theories, use of
a statistical description for the covariances of the field by the Bethe-Salpeter inte-
gral equation characterizes irreversibility in the multiple scattering process. It was
also shown theoretically, not long ago, that the Bethe-Salpeter equation under the
ladder approximation of uncorrelated discrete scatterers results in the usual vector
radiative transfer equation [22,27-30]. In the second approach, the author had a
particular objective: he wished to understand what is different between reversible
(e.g., specular reflection of a plane wave incident on a plane surface between two
homogeneous isotropic media) and irreversible (e.g., wave scattering by an inco-
herent array) manipulations of waves. As an additional comment, we note from
these earlier studies that the entropy production criterion in the context of multiple
scattering of waves by a disordered dielectric medium is a topic that has not been
explicitely investigated.

Propagation and scattering of electromagnetic waves in an inhomogeneous
medium depends critically on the ratio between the wavelength and the scale
lengths of the inhomogeneities. We emphasize at the outset that wave transport
through a medium with randomly positioned scatterers can be characterized by
a set of significant scale lengths. The first scale is the thickness & of the optical
medium. The second scale is the elastic mean-free path £ = 1/($o0), i.e., the av-
erage length the wave travels before it suffers an elastic collision. Here ¢ is the
concentration of scatterers and 0 is a scattering cross section. The third scale worth
considering is the transport mean-free path £, which is defined as the average dis-
tance over which momentum transfer becomes uncorrelated; i.e., the wave propa-
gates a distance of the order of £" before it forgets completely about its initial direc-
tion of propagation. The fourth scale is the wavelength A. The fifth scale is the size
of the scatterers, namely . Note that in the general case of a polydisperse system,
the size, shape, and refractive index distributions of the scatterers are characterized
by a distribution of lengths. We will find it useful to introduce a dimensionless
size parameter ¢ga, where a is the radius of the particles and ¢ is the wavenumber
of the wave. Waves with short wavelengths see a smoothly varying medium, while
long waves essentially do not feel the inhomogeneities. We would like to outline
here why the sixth scale, i.e., the length & of the path over which a polarized wave
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becomes depolarized, emerges from this analysis and how it depends on whether
it is initially linearly or circularly polarized, of the size of the particles, and of the
anisotropy of the diffusers that scatter light.

If 4 < ¢", the inhomogeneities in the medium give rise to only weak elastic
scattering. Consequently most of the incident wave is unscattered upon emerg-
ing from the sample. The single scattering events dominate; thus, the scattered
wave can be conveniently described by the Born approximation in standard scat-
tering theory. At the opposite multiple scattering regime # >> ¢ (but still in the
weak-localized regime A < £"), a wave scatters many times before emerging from
the sample. The unscattered component of the transmitted wave is exponentially
attenuated, by a factor exp(—2/¢"). The typical number of scattering events by a
particular wave propagating across the sample is ~ (2/£")> > 1.

The remainder of this section is organized as follows: we specialize our discus-
sion to the case where the radius of the particles is much smaller than the wave-
length of light in the supporting medium (Rayleigh regime), then the results es-
tablished earlier for the Rayleigh regime in terms of the Mueller scattering matrix
are extended to treat the Mie regime.

3.2.2.1 Rayleigh scattering

In this section we want to study the propagation of an incident pure state of polar-
ization in a medium with randomly positioned particles such that multiple scatter-
ing effects cannot be neglected. We present a self-contained review of the physics
behind the scattering of electromagnetic radiation from a pointlike suspension. The
derivation here focuses on the problem of determining the full Stokes vector for a
multiple scattered wave.

Let us suppose a quasi-monochromatic, of mean frequency vy, plane wave is
incident onto the left side of a scattering three-dimensional random medium that
occupies a finite volume 2 in free space, as displayed schematically in Fig. 4. The
output wave intensity pattern will be a complicated speckle pattern. To describe
the scattering of a polarized lightwave we use a right-handed Cartesian coordinate
system, referred to as the laboratory reference frame. Figure 4 shows a possible
path of a wave entering normally to the system. A useful physical picture for the
propagation of the wave as it enters the sample is one in which a wave undergoes
a random walk. Each trajectory is composed of straight-line segments and sudden
interruptions that randomly change the wave’s propagation direction. The average
length of each random typical step is the mean-free path £. In the weakly scatter-
ing regime, i.e., A < £ , the wave intensity satisfies the classical diffusion equa-
tion. Then for distances that are much larger than £, beyond which the direction
of light propagation is randomized, light transport can be regarded as a diffusion
process with diffusion constant D = 1/3v€", where v is the transport velocity, i.e.,
the speed of light in the medium. For pointlike scatterers, v is equal to the phase
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Figure 4 Schematic diagram and notation relating to the scattering geometry. An inci-
dent field, in the form of plane waves is scattered by a nonabsorbing medium that occupies
a finite volume €2 and of thickness &, consisting of uncorrelated spherical pointlike parti-
cles (Rayleigh scattering). Typical scattering path executing zigzag random walk through
the medium (propagating “channel”). The mean free path £ is the typical step size.

velocity, which is approximately equal to the velocity of light divided by the index
of refraction. It is worth mentioning that, unlike the transport mean-free path £”
that is obtained experimentally from steady-state measurements, the diffusion con-
stant D is obtained from dynamical measurements. The density of scatterers must
be small enough to allow the weak scattering approximation to be valid.

Besides being nonabsorbing, the scattering medium is assumed to be time-
invariant, nonmagnetic, spatially nondispersive, and such that the spatial fluctua-
tions of its dielectric susceptibility #;(r) tensor are statistically homogeneous and
stationary in space (at least in the wide sense). The incident and scattered beams
are normal to the surfaces of the scattering medium and the coordinates system
lies parallel to the slab faces. Typical realization of such medium would be a col-
lection of discrete pointlike, optically inactive scattering centers whose size is very
small compared to the wavelength of the scattered radiation (i.e., g2 < 1). This
approximation permits the small sphere to be treated as a dipolar oscillator with its
polarizability determined by the optical constants of the particle.

We also assume that the temporal fluctuations of the scatterers are sufficiently
slow relative to the period of the field oscillations so that the scattering medium
behaves as if it is essentially time-invariant (i.e., adiabatic approximation). The
usual boundary conditions require continuity of the magnetic field H and tangen-
tial electric field at every discontinuity surface. From the above assumptions, we
may characterize the dielectric susceptibility of the three-dimensional medium by
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uji(r) = u(r)s;;, of zero mean and white-noise correlation function:

(u(r)u(ry)) = ud(ry —r;) whenr; € Qand r, € Q
= 0 otherwise, (17)

where # is a constant that is a measure of the scattering potential. Let us add
a further condition: we will consider only weak disorders such that the elastic
mean-free path £ = 671/(ug]) is much larger than the wavelength of the radiation
(i.e., go€ > 1), qp 1s the free space wavenumber associated with the frequency vo;
consequently, the wavefield propagation may be described by a classical diffusion
process. Finally, we assume that the fluctuations of the medium and the fluctua-
tions of the incident field are statistically independent. These restrictions do not
present severe difficulties to experimental practice.

All information about an elastic scattering process is contained in the 16-
element Mueller matrix. A number of restrictions are placed at the outset on the
form of the M-matrix depending on the symmetry and reciprocity requirements.
On the one hand the Mueller matrix should show Perrin symmetry that holds
for elastic scattering from isotropic suspensions of particles; i.e., in that case M is
diagonal for normal incidence. On the other hand, the optical medium is nondis-
sipative. Upon introduction of these symmetries, the general form of the Mueller
matrix M can be written [5] as

10 0 0
0 0 0

M = m“ (18)
0 0 my 0
0 0 0 s

Now we analytically evaluate the elements m;;, 7 = 1,2,3 in Eq. (18) by an argu-
ment of maximum entropy. We proceed as follows. The entropy production per
scattering reads as

AS(n) = S[P(n + D] =S[P(n)] = hs(n), (19)

where P(n) denotes the degree of polarization after » + 1 scattering events. Here
S(P) is given by Eq. (9) and the subscript s indicates that /; depends on the partic-
ular state of polarization. With the help of Eq. (19), the total entropy production
after » + 2 scatterings reduces to

5y TP(0)] )
AS = S[P(n+ 1)] -S[P(0)] = hi() =In| ————). 20
[P+ 1)] =S [P(0)] ]ZO ) (S[p@ﬂ)] (20)
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The function /,(x) is taken to be a monotonically decreasing function from /,(0)
down to zero; this is to be expected from the theory of irreversible thermodynamics.
We are seeking a candidate function /(x) in the metric space .2 and satisfies the
condition /!’ (x) > 0, where the prime indicates differentiation with respect to x. At
this point it is necessary to postulate the functional form of /;(x): we have chosen
to work out the function /;(x) = Pexp(—x«x), which meets the above requirements.

Next, we consider an incident pure state of polarization that is linearly polarized
[Py+1 =m11(n)]. From Eq. (20), we arrive at the relation

- . 1 —exp(=x»
som1) =exp [ =D hG) | = exp {_q) [L“ . (21)
< -
This is equivalent to saying that
n—1
mu) =s" {4 B |, (22)
=0

where we have set for notational convenience A = exp(—) and B = exp(-X).
We call attention to the important fact that B can be written from Eq. (6.4) as
B =1-S8[P(1)]/In(2): consequently B is fully determined by double scattering.
Moreover when maximum entropy is achieved (i.e., in the limit » — 00), we re-
quire that A=) = 1/2; ie., in the limit» — 00. Putting everything together, we
get the final expression for m11:

my(n) =s" <Z(BW_I)> . (23)

Physically this procedure allows the successive orders of iteration to be ex-
pressed in terms of the sole parameter B. It is worth noting that the same formula
will apply for a pure state which is circularly polarized [i.e., P,4+1 = m33(n)] with
a change in the value of B. Note that this method is quite general and may be used
for more involved Mueller matrix, but it does not tell us what kind of trial func-
tions /;(x) are to be used. This maximum entropy argument can incorporate any
function /,(x) that satisfies the physical constraints.

Now that we have the above result, we can compare with the exact result. The
problem shifts to the explicit calculation of the dependence of the degree of polar-
ization of light in function of the number of scattering events when the medium
fulfills the assumptions stated above. Indeed, one can evaluate exactly the Mueller
matrix elements 72;;(n) by the Bethe-Salpeter equation handled in the latter approx-
imation. We emphasize that this derivation is valid over distances greater than the
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mean-free path. The problem of evaluating the coherency matrix reduces to a ma-
trix eigenvalue problem. We leave the details of formulas to the references [5,21].
Next we consider a pure state of polarization and arbitrary degree of spatial co-
herence, of unit intensity incident normally on the slab-shaped medium; its Stokes
vector writes as follows:

(1E117) + (|IE217) = 1

s, = (o) = <|€1|2)—<|Ez|i) (24)
(02) = (E|E; + E\E5)
(03) =i(E\E,—E\E,)

In the limit of weak scattering, the linear response of the scattering medium is
determined by the ensemble averaged covariance satisfying the Bethe-Salpeter
equation [5,21]. Following this approach, we obtain the expression for the out-
put Stokes vector:

1

| (o) mii(n)
= | (@ muon | )

(03) m33(n)

where the subcripts 1, and 2 label components with respect to the Cartesian co-
ordinate system chosen, m11(n) = 3(7/10)"/[2 + (7/10)"] and m33(n) = 3(1/2)"/
[2 + (7/10)"]; n + 1 being the number of scattering events. It is readily veri-
fied from Eq. (25) that the Mueller matrix of the scattering medium has the kind
of symmetry we expect from Eq. (18). Having found the form of the Stokes vec-
tor S,, we might naturally inquire as to what form the output degree of polarization

has. From Eq. (25), P, takes the form

2n |2
P, =mii(n) |:(C71)2 + (02)* + (03)* (g) i| , (26)

which involves three independent parameters.

Several comments may be in order. This equation is in accordance with the fact
that single scattering (i.e., » = 0) by pointlike particles having spherical symmetry
preserves the state and degree of polarization. For concreteness, it is worthwhile to
specialize Eq. (26) to some special cases of interest. For instance, an input linear
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Figure S5 Degree of polarization of scattered light as a function of the number of scat-
terings # (Eq. [28]) for an input pure state of linear parallel polarization (solid line), right
circular polarization (dashed line).

polarization state (E = e;) has for output Stokes vector

1
my1(n)

O )

0

degree of polarization P, = m11(n), which is a monotonically decreasing function
of the number of scattering (see Fig. 5). Similarly, for an input right-handed cir-
cular polarization state [E = (1/4/2)(e; —ie,)], one gets:

1

0

E
m33(n)

P, = m33(n). Then, the two functions m1; and m33 have clear physical meanings.
A curve showing the behavior of 733(n) is also shown in Fig. 5. The process of
depolarization cannot be assimilated to an isotropic contraction of the Poincaré
sphere but induces a symmetry breaking, i.e., the symmetry of SO(3) is broken.

Figure 6 illustrates the asymmetric depolarization, as # is increased, through the

change of symmetry of the surface Sé)(n)

ellipsoid (» > 0).

passing from a sphere (» = 0) to a prolate
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Figure 6 Parametric plots of the surface Sg(n) for different values of the number of scat-
tering events #. Rayleigh scattering by pointlike dielectric spheres: (a) » = 0, (b) » = 2,
(c)n=4,and (d)» = 6.

Figure 7 Entropy production AS(#) = S[P(n + 1)] —S[P(#n)] as a function of the
number of scattering events. Same symbols as in Fig. 5.

To further discuss the physical significance of these results, we have also plotted
the variation of the entropy production AS(n) = S[P(n + 1)] —S[P(n)] with the
number of scattering events (Fig. 7). As can be seen, AS(n) is well represented by
an exponential decay AS(n) = aexp(—bn), with a and & depending on the particular
state of polarization. For large values of # (say, » > 10), the entropy of radiation
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is unaffected by further scattering, it defines the steady state of maximum entropy
[S(P = 0) = In(2)] attainable by multiple scattering. In closing it is worth ob-
serving that in the limit of large number of scattering events, Eq. (18) approaches
the Mueller matrix of an ideal depolarizer [5]

1 0 0 0

1o 0o 0 o

Jdm M=o 5 0 o @7)
00 0 0

3.2.2.2 Mie scattering

Thus far the analysis in the previous subsection has been confined to situations in
which the size of the scatterers is very small relative to the wavelength of the prob-
ing radiation, i.e., Rayleigh region. We now focus attention on a natural extension
of the theory to cover the interesting situation of scattering by objects whose size is
of the order of the wavelength or larger. A computational Monte Carlo algorithm is
used to perform a simulation of the complete Stokes parameters for multiple scat-
tered radiation in an inhomogeneous system composed of uncorrelated spherical
particles. These simulations indicate that the amount of depolarization generated
from multiple scattering depends on such factors as the size and shape distribution
and index of refraction. The primary aim of this subsection is to present a theory
for predicting the effect of particle size on the quantity of our primary interest, i.e.,
the degree of polarization, which is then compared with Monte Carlo simulation
studies. These numerical results are compared to measurements on suspensions of
polystyrene latex spheres in water.

The method of Monte Carlo simulation is well known in the context of statis-
tical mechanics and condensed-matter physics; for a recent review see Lewis and
Miller [31]. The Monte Carlo modeling technique provides a way of finding so-
lutions to multiple scattering effects by tracing histories, i.e., sequences of events,
that statistically occur to waves propagating through an optical medium. The fol-
lowing is a develoment of such a method. Here we are particularly concerned about
the size parameter and optical depth dependences of the characteristic lengths of
depolarization. A recent review article on Monte Carlo results that is complemen-
tary to the present subsection was presented by Bruscaglioni and colleagues [32].
The mathematical and statistical assumptions inherent in this procedure are well
known in the literature and are not covered in depth in this subsection.

In this numerical experiment, one generates a realization of the random
medium and calculates the resulting wavefield. We have used the SLLAB Monte
Carlo simulation code to analyze the depolarization behavior of a wave propa-
gating through a slab of finite thickness and composed of uncorrelated spherical
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particles [21,33]. This simulation technique was developed to study the three-
dimensional random walklike multiple scattering process of the wave propagation.
In the SLLAB code, the three-dimensional paths for waves are followed from one
scattering to the next as the wave propagates into the medium. Fach scattering is
assumed to be elastic and is described by the standard Mie theory. A single nu-
merical simulation consists in launching some number of waves, at a source, along
a specified axis. Referring to Fig. 4, a typical scattering path consists of a series
of linear translations of random length (of average value equal to the mean-free
path £), each of which is followed by a change of flight direction. Selection of the
new flight direction is made by generating a random number from a scattering dis-
tribution function. The numerical implementation of this algorithm was checked
through comparison with the Rayleigh regime, for which exact analytic results are
known. The theoretical details pertinent to the testing of the Monte Carlo code are
reviewed in Martinez [33].

We still assume in our subsequent discussion that the situation of weak scat-
tering limit and absorption can be regarded as negligible. Consider a quasi-
monochromatic plane wavefield that is incident normally along the x5 axis upon
a plane-parallel slab, of finite thickness & (¢ >> ¢) and of infinite extent in the
x1,%7 directions, composed of uncorrelated spherical particles of radius a (Fig. 4).
We begin by computing the degree of polarization of the light transmitted by the
scattering medium for incident linearly (P7,) and circularly (P¢) polarized light.
To do this, one must evaluate the different contributions of light following many
different paths. Take a particular sequence of scattering events. The number of
steps in this path of length s is # = s/£. The number of scattering paths of length s
is simply given by the Green’s function G(#,4) of the diffusion equation. The de-
grees of polarization are given by a proper weighting G(n,4) of scattering paths of
length s. The resulting expressions are

./0 Ji(m)G(n,d)dn

P; % ,
/ G(n,d)dn
0

where we have adopted the notation 7 = L. for linear and C for circular states

(28)

of polarization. In the multiple scattering regime, the functions f express the de-
pendences of the output degrees of polarization for a number of scatterings equal
ton + 1. In the large » limit, the /”s simply reduce to

i = Sep (1)
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and

fon) = exp(n)

c(n) = —expl-n—
2 Ce

[21]. The C’s define characteristic lengths of depolarization for a path of » + 1

scatterings: (7, = €¢/In(10/7) and (¢ = ¢/In(2). From the numerical values of the

(’s we find that {;, = 2{¢. Upon performing the integration in (28), we obtain

p, = ﬁ’s.mh (K/&z)) (29)
¢ sinh (d/ E,z)

where &; = (555/3)1/2, with 7 = L, and C defining the characteristic lengths of

depolarization for the slab geometry for linear and circular states of polarization,

respectively. Since 4 3> € ;, the degree of polarization of the transmitted light in the

far field can be approximated by

P = %sinh(é)exp(—é). (30)

Thus we see that the characteristic length of depolarization for incident linearly
polarized light is greater (by a factor of 4/2) than the corresponding length
for incident circularly polarized light. This analysis should apply equally well
for large spheres provided that ¢ is changed into the transport mean-free path
¢ =1/(dpo’) = £/[1-(cos(0))], where (cos()) is the mean cosine of the scatter-
ing angle 0, and that the appropriate size dependence of the /s is inserted therein.
Here the transport scattering cross section for each scatterer is defined in the usual
wayas 0 = fQ 0(0)[1 —cos(0)]49.

We now move on to the numerical results. Through the use of the above nu-
merical algorithm, a set of different simulations was performed to investigate the
effects of the particle size and medium thickness. The input parameters are the
relative refractive index, m = ng/np; = 1.20, where ng and zp; are the refractive
index of the spheres (ng = 1.59 for polystyrene) and of the surrounding medium
(nyr = 1.33 for water), the size parameter gz and £¢° = 1000. These parameters
were chosen for the purpose of comparison with experimental data. The experi-
ments were carried out at room temperature, using a setup similar to that described
in Bicout and Brosseau [21], which contains all relevant details. A semiconductor
laser emitting at 0.67 pm was used as the source beam. The beam was normally
incident on one side of the sample (3-mm thickness) and the scattered light trans-
mitted through the back wall of the sample cell was detected within a solid angle
of collection of 2 deg. The scattering medium consists of various concentra